Simplified analytical solution of one-dimensional nonlinear consolidation of soil based on reduced order method
WANG Hongxin1,2,XU Wei1,LI Chuanxun3
(1. Department of Civil Engineering,Shanghai University,Shanghai 200444,China;2. Shanghai Urban Construction Municipal Engineering(Group) Co. Ltd.,Shanghai 200065,China;3. Faculty of Civil Engineering and Mechanics,Jiangsu University,Zhenjiang,Jiangsu 212013,China)
Abstract:The second-order partial differential equation is used in the traditional calculation of soil consolidation. However,it is difficult to obtain analytical solutions in most cases for nonlinear consolidation problems. To solve this problem,a simplified analytical solution considering the nonlinear characteristics of soil is presented by reducing the order and introducing an equivalent coefficient that reflects the nonlinear characteristics of the soil. The analytical solution can be expressed by elementary function,which can more conveniently calculate the degree of consolidation and the excess pore water pressure at each stage of soil. The error between the analytical solution and the differential numerical solution is less than 4.5% in the early consolidation stage,and the maximum deviation is about 10% in the late consolidation stage. Based on the analytical solution,it is easier to take other factors affecting consolidation into account,which provides a new way to deal with the consolidation problem.
王洪新1,2,徐 威1,李传勋3. 基于降阶法的土体一维非线性固结简化解析解[J]. 岩石力学与工程学报, 2022, 41(1): 195-204.
WANG Hongxin1,2,XU Wei1,LI Chuanxun3. Simplified analytical solution of one-dimensional nonlinear consolidation of soil based on reduced order method. , 2022, 41(1): 195-204.
TERZAGHI K. Die Berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hidrodynamichen span-nungserscheinungen akademie der wissenschaften in wien[J]. Mathematish-Naturwissen- Schaftiliche Klasse,1923,132(3):125-138.
[2]
DAVIS E H,RAYMOND G P. A non-linear theory of consolidation[J]. Geotechnique,1965,15(2):161-173.
[3]
POSKITT T J. The consolidation of saturated clay with variable permeability and compressibility[J]. Géotechnique,1969,19(2):234-252.
[4]
MESRI G,ROKHSAR A. Theory of consolidation for clays[J]. Journal of Geotechnical Engineering ASCE,1974,100(GTB):889-904.
[5]
李冰河,王奎华,谢康和,等. 软黏土非线性一维固结有限差分法分析[J]. 浙江大学学报:工学版,2000,34(4):28-33.(LI Binghe,WANG Kuihua,XIE Kanghe,et al. One-dimensional non-linear consolidation analysis of soft clay by FDM[J]. Journal of Zhejiang University:Engineering Science,2000,34(4):28-33.(in Chinese))
[6]
李冰河,谢永利,谢康和,等. 软黏土非线性一维固结半解析解[J].西安公路交通大学学报,1999,19(1):27-32.(LI Binghe,XIE Yongli,XIE Kanghe,et al. Semi-analytical solution of one dimensional non-linear consolidation of soft clay[J]. Journal of Xi'an Highway University,1999,19(1):27-32.(in Chinese))
[7]
LEKHA K R,KRISHNASWAMY N R,BASAK P. Consolidation of clays for variable permeability and compressibility[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(11): 1 001-1 009
[8]
李传勋,王 素. 软土一维非线性固结近似解析解[J]. 岩土力学,2018,39(10):3 548-3 554.(LI Chuanxun,WANG Su. An analytical solution for one-dimensional nonlinear consolidation of soft soil[J]. Rock and Soil Mechanics,2018,39(10):3 548-3 554.(in Chinese))
[9]
黄朝煊. 软土地基一维非线性固结简化解法研究[J]. 长江科学院院报,2018,35(12):90-95.(HUANG Chaoxuan. Simplified solution of one-dimensional nonlinear consolidation of soft soil foundation[J]. Journal of Yangtze River Scientific Research Institute,2018,35(12):90-95.(in Chinese))
[10]
刘忠玉,纠永志,乐金朝,等. 基于非Darcy 渗流的饱和黏土一维非线性固结分析[J]. 岩石力学与工程学报,2010,29(11):2 348-2 355. (LIU Zhongyu,JIU Yongzhi,YUE Jinchao,et al. One-dimensional nonlinear consolidation analysis of saturated clay based on the non-Darcy flow[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(11):2 348-2 355.(in Chinese))
[11]
宗梦繁,吴文兵,梅国雄,等. 连续排水边界条件下土体一维非线性固结解析解[J]. 岩石力学与工程学报,2018,37(12):2 829- 2 838.(ZONG Mengfan,WU Wenbing,MEI Guoxiong,et al. An analytical solution for one-dimensional nonlinearconsolidation of soils with continuous drainage boundary[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(12):2 829-2 838.(in Chinese))
[12]
XIE K H,LEO C J. Analytical solutions of one-dimensional large strain consolidation of saturated and homogeneous clays[J]. Computers and Geotechnics,2004,31(4):301-314.
[13]
SCHOFIELD A,WROTH P. Critical state soil mechanics[M]. 1st ed. England:Mcgraw-Hill Publishing Company,1968:52-60.
[14]
BOLTON M. A guide to soil mechanics[M]. 1st ed. London:The Macmillan Press Ltd.,1979:161-169.
[15]
POWRIE W. Soil mechanics:concepts and applications[M]. 1st ed. London:E&FN Spon,1997:211-218.
[16]
WANG H X,XU W,ZHANG Y Y,et al. Simplified solution to one-dimensional consolidation with threshold gradient[J]. Computers and Geotechnics,2021,131:103943
[17]
BERRY P L,WILKINSON W B. The radial consolidation of clay soils[J]. Geotechnique,1969,19(2):253-284.
[18]
GIBSON R E,GOBERT A,SCHFFIMAN R L. On Cryer¢s problem with large displacements and variable permeability[J]. Geotechnique,1990,40(4):627-631.