Digital twin model of high-arch dams driven by microseismic damage and its application
MA Ke1, 2, TANG Yusheng1, GAO Zhiliang1, 3, KE Hu1, 3
(1. School of Infrastructure Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China;
2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China;
3. Guodian Dadu River Basin Hydropower Development Co., Ltd., Chengdu, Sichuan 610041, China)
Abstract:To validate the integration of microseismic (MS) monitoring and digital twin (DT) technology in the safety monitoring of high-arch dams, this study proposes a dynamic DT approach driven by MS damage data. First, a data-driven DT system framework was established for modeling MS damage in high-arch dams. A method for constructing the twin model and an adaptive meshing reconstruction technique were introduced. An MS event model was developed using key spatiotemporal and intensity parameters, with model rendering achieved through interpolation algorithms and vertex coloring techniques. A rock mass degradation model was incorporated to dynamically adjust mechanical parameters by accounting for cumulative MS damage. Additionally, a feedback correction mechanism was established to update parameters in real time based on the locations of MS events and their energy release. A dynamic DT simulation method that integrates a development engine, numerical software, and database systems was implemented. This proposed method was applied to a case study of the Dagangshan high-arch dam. During a simulated rise in reservoir water levels from 1 120 m to 1 128 m, the stress concentration zones identified by the model—including the dam heel, the upstream dam face at elevations of 940 to 1 030 m, the downstream dam face at 979 to 1 081 m (both wings and the crown), the downstream arch ends, and the dam toe—demonstrated a high spatial correlation with actual MS activity. The average matching rate reached 92%, with some days achieving 100%. These results confirm the accuracy and effectiveness of the proposed MS data-driven DT simulation method, providing a new technical pathway for the digital construction and intelligent safety monitoring of high-arch dams.
马 克1,2,唐雨生1,高志良1,3,柯 虎1,3. 微震损伤驱动的高拱坝数字孪生模型及其应用[J]. 岩石力学与工程学报, 2025, 44(10): 2565-2579.
MA Ke1, 2, TANG Yusheng1, GAO Zhiliang1, 3, KE Hu1, 3. Digital twin model of high-arch dams driven by microseismic damage and its application. , 2025, 44(10): 2565-2579.
李庆斌,马 睿,胡 昱,等. 大坝智能建造研究进展与发展趋势[J]. 清华大学学报:自然科学版,2022,62(8):1 252-1 269.(LI Qingbin,MA Rui,HU Yu,et al. A review of intelligent dam construction techniques[J]. Journal of Tsinghua University:Science and Technology,2022,62(8):1 252-1 269.(in Chinese))
[2]
王佳俊,祁宁春,钟登华,等. 高心墙堆石坝原生集成式智能无人碾压系统研发及应用[J]. 水利学报,2022,53(12):1 421-1 432. (WANG Jiajun,QI Ningchun,ZHONG Denghua,et al. Development and application of native-integrated intelligent unmanned compaction system for high core rockfill dam[J]. Journal of Hydraulic Engineering,2022,53(12):1 421-1 432.(in Chinese))
[3]
袁冬阳,顾冲时,顾 昊. 严寒地区混凝土重力坝变形行为分析与预测模型[J]. 水利学报,2022,53(6):733-746.(YUAN Dongyang,GU Chongshi,GU Hao. Displacement behavior analysis and prediction model of concrete gravity dams in cold region[J]. Journal of Hydraulic Engineering,2022,53(6):733-746.(in Chinese))
[4]
王 昀,杨 强,张 曼,等. 溪洛渡拱坝蓄水期谷幅变形驱动机制研究[J]. 岩石力学与工程学报,2023,42(5):1 083-1 095. (WANG Yun,YANG Qiang,ZHANG Man,et al. Study on mechanism of reservoir valley width deformation during impoundment of Xiluodu arch dam[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(5):1 083-1 095.(in Chinese))
[5]
姜卫平,梁娱涵,余再康,等. 卫星定位技术在水利工程变形监测中的应用进展与思考[J]. 武汉大学学报:信息科学版,2022,47(10):1 625-1 634.(JIANG Weiping,LIANG Yuhan,YU Zaikang,et al. Progress and thoughts on application of satellite positioning technology in deformation monitoring of water conservancy projects[J]. Geomatics and Information Science of Wuhan University,2022,47(10):1 625-1 634.(in Chinese))
[6]
李术才,王 雷,江 贝,等. 动压影响煤柱下方巷道微震特征及破坏机制[J]. 中国矿业大学学报,2019,48(2):247-257.(LI Shucai,WANG Lei,JIANG Bei,et al. Microseismic characteristic and failure mechanism of roadway below coal pillar under dynamic pressure[J]. Journal of China University of Mining and Technology,2019,48(2):247-257.(in Chinese))
[7]
冯夏庭,肖亚勋,丰光亮,等. 岩爆孕育过程研究[J]. 岩石力学与工程学报,2019,38(4):649-673.(FENG Xiating,XIAO Yaxun,FENG Guangliang,et al. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(4):649-673.(in Chinese))
[8]
朱 淳,龚逸非,宋盛渊,等. 滑坡多源监测技术及预警模型研究进展与展望[J]. 西南交通大学学报,2025,待刊.(ZHU Chun,GONG Yifei,SONG Shengyuan,et al. Progress and prospects of landslide multi-source monitoring technology and early warning modelling research[J]. Journal of Southwest Jiaotong University,2025,to be pressed.(in Chinese))
[9]
DONG L J,ZHU H Y,YAN F,et al. Risk field of rock instability using microseismic monitoringdata in deep mining[J]. Sensors,2023,23(3):1 300.
[10]
李 壮,徐奴文,孙志强,等. 基于微震监测与数值模拟的高应力软岩隧道围岩大变形特征分析[J]. 岩石力学与工程学报,2024,43(11):2 725-2 737.(LI Zhuang,XU Nuwen,SUN Zhiqiang,et al. Analysis of large deformation characteristics of soft rock tunnel surrounding rock under high geo-stresses based on microseismic monitoring and numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(11):2 725-2 737.(in Chinese))
[11]
李天斌,许韦豪,马春驰,等. 基于深度学习的隧道微震监测及岩爆预警技术与系统研究[J]. 岩石力学与工程学报,2024,43(5):1 041-1 063.(LI Tianbin,XU Weihao,MA Chunchi,et al. Research of technology and system of tunnel microseismic monitoring and rockburst early warning based on deep learning[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(5):1 041-1 063.(in Chinese))
[12]
来兴平,贾 冲,崔 峰,等. 急倾斜巨厚煤层开采深度影响的覆岩能量演化规律研究[J]. 岩石力学与工程学报,2023,42(2):261-274.(LAI Xingping,JIA Chong,CUI Feng,et al. Study on the evolution law of overburden energy of steeply inclined extra-thick coal seam influenced by mining depth[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(2):261-274.(in Chinese))
[13]
赵金帅,陈炳瑞,江 权,等. 爆破荷载下白鹤滩大型地下厂房累积损伤机制研究[J]. 岩石力学与工程学报,2022,41(5):916-925.(ZHAO Jinshuai,CHEN Bingrui,JIANG Quan,et al. Study on cumulative damage mechanisms of Baihetan large underground powerhouse under blasting loads[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(5):916-925.(in Chinese))
[14]
LI A,DAI F,LIU Y,et al. Dynamic stability evaluation of underground cavern sidewalls against flexural toppling considering excavation-induced damage[J]. Tunnelling and Underground Space Technology,2021,112:103903.
[15]
吴 静,郭德宇,张乐文,等. 金沙江溪洛渡水电站拱坝及边坡稳定性分析研究[J]. 岩石力学与工程学报,2023,42(10):2 478-2 495.(WU Jing,GUO Deyu,ZHANG Lewen,et al. Stability analysis of arch dam and slope of the Xiluodu hydropower station on the Jinsha river[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(10):2 478-2 495.(in Chinese))
[16]
陶 飞,刘蔚然,刘检华,等. 数字孪生及其应用探索[J]. 计算机集成制造系统,2018,24(1):1-18.(TAO Fei,LIU Weiran,LIU Jianhua,et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems,2018,24(1):1-18.(in Chinese))
[17]
朱 庆,张利国,丁雨淋,等. 从实景三维建模到数字孪生建模[J]. 测绘学报,2022,51(6):1 040-1 049.(ZHU Qing,ZHANG Liguo,DING Yulin,et al. From real 3D modeling to digital twin modeling[J]. Acta Geodaetica et Cartographica Sinica,2022,51(6):1 040-1 049.(in Chinese))
[18]
葛世荣,张 帆,王世博,等. 数字孪生智采工作面技术架构研究[J]. 煤炭学报,2020,45(6):1 925-1 936.(GE Shirong,ZHNAG Fan,WANG Shibo,et al. Digital twin for smart coal mining workface:Technological frame and construction[J]. Journal of China Coal Society,2020,45(6):1 925-1 936.(in Chinese))
[19]
袁 亮,张 通,张庆贺,等. 双碳目标下废弃矿井绿色低碳多能互补体系建设思考[J]. 煤炭学报,2022,47(6):2 131-2 139. (YUAN Liang,ZHANG Tong,ZHANG Qinghe,et al. Construction of green,low-carbon and multi-energy complementary system for abandoned mines under global carbon neutrality[J]. Journal of China Coal Society,2022,47(6):2 131-2 139.(in Chinese))
[20]
张来斌,王金江. 油气生产智能安全运维:内涵及关键技术[J]. 天然气工业,2023,43(2):15-23.(ZHANG Laibin,WANG Jinjiang. Intelligent safe operation and maintenance of oil and gas production systems:Connotation and key technologies[J]. Natural Gas Industry,2023,43(2):15-23.(in Chinese))
[21]
朱合华,凌加鑫,朱梦琦,等. 钻爆法隧道智能建造:最新技术与未来展望[J]. 现代隧道技术,2024,61(2):18-27.(ZHU Hehua,LING Jiaxin,ZHU Mengqi,et al. Intelligent construction for drill-and-blast tunnels:Latest technologies and future prospects[J]. Modern Tunnelling Technology,2024,61(2):18-27.(in Chinese))
[22]
刘占省,史国梁,杜修力,等. 数字孪生驱动的预应力钢结构安全智能控制方法[J]. 天津大学学报:自然科学与工程技术版,2023,56(10):1 043-1 053.(LIU Zhansheng,SHI Guoliang,DU Xiuli,et al. Intelligent safety control method of prestressed steel structure driven by digital twins[J]. Journal of Tianjin University:Science and Technology,2023,56(10):1 043-1 053.(in Chinese))
[23]
人民网. 《智能大坝理念与实践》出版发行[EB/OL]. (2025-5-30)[2025-5-30]. https://finance.people.com.cn/n1/2025/0530/c1004-40491355.html.(People's Daily Online. “Concepts and Practices of Smant Dam” was published[EB/OL]. (2025-5-30)[2025-5-30]. https://finance.people.com.cn/n1/2025/0530/c1004-40491355.html. (in Chinese))
[24]
钟登华,张天鸿,余红玲,等. 智能时代与大坝工程建设智能化研究进展[J]. 水利学报,2025,56(1):1-19.(ZHONG Denghua,ZHANG Tianhong,YU Hongling,et al. Advancements in intelligent dam engineering construction in the intelligence era[J]. Journal of Hydraulic Engineering,2025,56(1):1-19.(in Chinese))
[25]
刘六宴,李宏恩,高长胜,等. 智能大坝研究进展与发展路径思考[J]. 岩土工程学报,2025,待刊.(LIU Liuyan,LI Hongen,GAO Changsheng,et al. Research progress and reflection on development path of smart dams[J]. Chinese Journal of Geotechnical Engineering,2025,to be pressed.(in Chinese))
[26]
冶运涛,蒋云钟,梁犁丽,等. 数字孪生流域:未来流域治理管理的新基建新范式[J]. 水科学进展,2022,33(5):683-704.(YE Yuntao,JIANG Yunzhong,LIANG Lili,et al. Digital twin watershed:new infrastructure and new paradigm of future watershed governance and management[J]. Advances in Water Science,2022,33(5):683-704.(in Chinese))
[27]
黄 艳,喻 杉,罗 斌,等. 面向流域水工程防灾联合智能调度的数字孪生长江探索[J]. 水利学报,2022,53(3):253-269. (HUANG Yan,YU San,LUO Bin,et al. Development of the digital twin Changjiang River with the pilot system of joint and intelligent regulation of water projects for flood management[J]. Journal of Hydraulic Engineering,2022,53(3):253-269.(in Chinese))
[28]
樊启祥,陆佑楣,周绍武,等. 金沙江水电工程智能建造技术体系研究与实践[J]. 水利学报,2019,50(3):294-304.(FAN Qixiang,LU Youmei,ZHOU Shaowu,et al. Research and practice on intelligent construction technology system of Jinsha River hydropower projects[J]. Journal of Hydraulic Engineering,2019,50(3):294-304.(in Chinese))
[29]
刘有志,张国新,谭尧升,等. 仿真大坝建设关键技术与实践应用[J]. 清华大学学报:自然科学版,2021,61(7):714-723.(LIU Youzhi,ZHANG Guoxin,TAN Yaosheng,et al. Key techniques for dam construction simulations[J]. Journal of Tsinghua University:Science and Technology,2021,61(7):714-723.(in Chinese))
[30]
唐文坚,申邵洪,杨恒玲,等. 数字孪生水利工程关键技术及其应用实践——以江垭皂市工程为例[J]. 长江科学院院报,2024,41(8):172-179.(TANG Wenjian,SHEN Shaohong,YANG Hengling,et al. Practices of applying key technologies of digital twin water conservancy to the Jiangya and Zaoshi Project as an example[J]. Journal of Changjiang River Scientific Research Institute,2024,41(8):172-179.(in Chinese))
[31]
周昌台,谢和平,朱建波. 基于能量理论的岩石动态破坏准则[J]. 岩石力学与工程学报,2023,42(8):1 890-1 898.(ZHOU Changtai,XIE Heping,ZHU Jianbo. A dynamic strength criterion of rock materials based on energy theory[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(8):1 890-1 898.(in Chinese))