[1] |
李夕兵,姚金蕊,宫凤强. 硬岩金属矿山深部开采中的动力学问题[J]. 中国有色金属学报,2011,21(10):2 551-2 563.(LI Xibing,YAO Jinrui,GONG Fengqiang. Dynamic problems in deep exploitation of hard rock metal mines[J]. The Chinese Journal of Non-ferrous Metals,2011,21(10):2 551-2 563.(in Chinese))
|
[2] |
李夕兵,周 健,王少锋,等. 深部固体资源开采评述与探索[J]. 中国有色金属学报,2017,27(6):1 236-1 262.(LI Xibing,ZHOU Jian,WANG Shaofeng,et al. Review and practice of deep mining for solid mineral resources[J]. The Chinese Journal of Nonfer-rous Metals,2017,27(6):1 236-1 262.(in Chinese))
|
[3] |
吴顺川,张晨曦,成子桥. 基于PCA-PNN原理的岩爆烈度分级预测方法[J]. 煤炭学报,2019,44(9):2 767-2 776.(WU Shuchuan,ZHANG Chenxi,CHENG Ziqiao. Prediction method of rock burst intensity classification based on PCA-PNN principle[J]. Journal of China Coal Society,2019,44 (9):2 767-2 776.(in Chinese))
|
[4] |
汤志立,王 雪,徐千军. 基于过采样和客观赋权法的岩爆预测[J]. 清华大学学报:自然科学版,2021,61(6):543-555.(TANG Zhili,WANG Xue,XU Qianjun. Rockburst prediction based on oversampling and objective weighting method[J]. Journal of Tsinghua University:Science and Technology,2021,61(6):543-555.(in Chinese))
|
[5] |
詹术霖,黄明清,陈 霖. 基于3种机器学习模型的岩爆类型预测[J]. 福州大学学报:自然科学版,2023,51(6):879-886.(ZHAN Shulin,HUANG Mingqing,CHEN Lin. Prediction of rockburst type based on three machine learning models[J]. Journal of Fuzhou University:Natural Science,2023,51(6):879-886.(in Chinese))
|
[6] |
LIU Q,XUE Y,LI G,et al. Application of KM-SMOTE for rockburst intelligent prediction[J]. Tunnelling and Underground Space Technology 2023,138(8):105180.
|
[7] |
吴 菡,郭永刚,何军杰. 基于主成分和改进支持向量机的岩爆倾向性预测[J]. 工业建筑,2023,53(10):119-125.(WU Han,GUO Yonggang,HE Junjie,et al. Rockburst propensity prediction based on principal component analysis and improved support vector machine[J]. Industrial Construction,2023,53(10):119-125.(in Chinese))
|
[8] |
谭文侃,叶义成,胡南燕. LOF与改进SMOTE算法组合的强烈岩爆预测[J]. 岩石力学与工程学报,2021,40(6):1 186-1 194.(TAN Wenkan,YE Yicheng,HU Nanyan,et al. Prediction of severe rockburst using a combination of lof and improved SMOTE al-gorithm[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1 186-1 194.(in Chinese))
|
[9] |
AHMAD M,KATMAN H Y,AL-MANSOB R A,et al. Prediction of rockburst intensity grade in deep underground excavation using adaptive boosting classifier[J]. Complexity,2022,24(5):1-10.
|
[10] |
GUO J,GUO J,ZHANG Q,et al. Research on Rockburst classifi-cation prediction based on BP-SVM model[J]. IEEE Access,2022,10: 50 427-50 447.
|
[11] |
ADOKO A C,GOKCEOGLU C,WU L,et al. Knowledge-based and data-driven fuzzy modeling for rockburst prediction[J]. Interna-tional Journal of Rock Mechanics and Mining Sciences,2013,61(6):86-95.
|
[12] |
ZHOU J,LI X,MITRI H S. Classification of rockburst in underground projects:comparison of ten supervised learning methods[J]. Journal of Computing in Civil Engineering,2016,30(5):04016003.
|
[13] |
DONG L J,LI X B,KANG P. Prediction of rockburst classification using random forest[J]. Transactions of Nonferrous Metals Society of China,2013,23(2):472-477.
|
[14] |
LI N,JIMENEZ R. A logistic regression classifier for long-term probabilistic prediction of rock burst hazard[J]. Natural Hazards,2018,90:197-215.
|
[15] |
张俊峰. 大相岭隧道岩爆灾害分阶段预测与控制技术研究[硕士学位论文][D]. 成都:西南交通大学,2010.(ZHANG Junfeng. Re-search on staged prediction and control technology of rockburst disas-ters in Daxiangling tunnel[M. S. Thesis][D]. Chengdu:Southwest Jiaotong University,2010.(in Chinese))
|
[16] |
ZHOU J,LI X,SHI X. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines[J]. Safety Science,2012,50(4):629-644.
|
[17] |
XUE Y,LI Z,LI S,et al. Prediction of rock burst in underground caverns based on rough set and extensible comprehensive evalua-tion[J]. Bulletin of Engineering Geology and the Environment,2019,78(7):417-429.
|
[18] |
衣永亮,曹 平,蒲成志. 金川深部典型岩石岩爆倾向性多因素综合评判[J]. 科技导报,2010,28(2):76-80.(YI Yongliang,CAO Ping,PU Chengzhi. Comprehensive evaluation of rockburst propensity of typical rocks in deep areas of Jinchuan[J]. Science and Technology Review,2010,28(2):76-80.(in Chinese))
|
[19] |
宫凤强,李夕兵. 岩爆发生和烈度分级预测的距离判别方法及应用[J]. 岩石力学与工程学报,2007,26(5):1 012-1 018.(GONG Fengqiang,LI Xibing. Distance discrimination method and applica-tion for predicting rockburst occurrence and intensity grading[J]. Chi-nese Journal of Rock Mechanics and Engineering,2007,26(5):1 012-1 018.(in Chinese))
|
[20] |
张金明,朱晓源,程 鹏. 拉森斯(Russenses)岩爆判据研究[J]. 浙江水利科技,2004,42(1):9-11.(ZHANG Jinming,ZHU Xiaoyuan,CHENG Peng. Study on Russenses rockburst criteria[J]. Zhejiang Water Conservancy Science and Technology,2004,42(1):9-11.(in Chinese))
|
[21] |
NGUYEN H M,COOPER E W,KAMEI K,et al. Borderline over-sampling for imbalanced data classification[J]. International Journal of Knowledge Engineering,2011,3(1):4-21.
|
[22] |
刘 波,梁龙跃. 基于KM-SVMSMOTE-CNN的信用卡欺诈检测[J]. 计算机系统应用,2022,31(6):361-367.(LIU Bo,LIANG Longyue. Credit card fraud detection based on KM-SVMSMOTE-CNN[J]. Computer Systems Applications,2022,31(6):361-367.(in Chinese))
|
[23] |
汤立志,徐千军. 基于九种机器学习的岩爆预测研究[J]. 岩石力学与工程学报,2020,39(4):773-781.(TANG Lizhi,XU Qi-anjun. Rock burst prediction based on nine machine learning algo-rithms[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(4):773-781.(in Chinese))
|
[24] |
YANG L,SHAMI A J N. On hyperparameter optimization of ma-chine learning algorithms:theory and practice[J]. Neurocomputing,2020,415(12):295-316.
|
[25] |
贺隆平,姚 囝,王其虎,等. 基于自动机器学习的岩爆烈度分级预测模型[J]. 岩土力学,2024,35(9):1-10.(HE Longping,YAO Nan,WANG Qihu,et al. Rockburst intensity classification prediction model based on automated machine learning[J]. Rock and Soil Mechanics,2024,35(9):1-10.(in Chinese))
|