2025年7月27日 星期日
岩石力学与工程学报  2025, Vol. 44 Issue (6): 1624-1635    DOI: 10.3724/1000-6915.jrme.2024.0952
  学术论文 本期目录 | 过刊浏览 | 高级检索 |
GFRP筋微型抗拔桩承载性能与荷载传递机制
白晓宇,张英杰,吴泽坤,孙  淦,刘俊伟,闫  楠
(青岛理工大学 土木工程学院,山东 青岛  266520)
The bearing capacity and load transfer mechanism of GFRP bar micro uplift pile
BAI Xiaoyu, ZHANG Yingjie, WU Zekun, SUN Gan, LIU Junwei, YAN Nan
(School of Civil Engineering, Qingdao University of Technology, Qingdao, Shandong 266520, China)
全文: PDF (2313 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为研究玻璃纤维增强聚合物筋微型抗拔桩(glass fiber reinforced polymer-micro uplift pile,简称GFRP-MUP)的承载性能与荷载传递机制,对GFRP-MUP与钢筋微型抗拔桩(steel bar-micro uplift pile,简称SB-MUP)进行现场极限载荷试验。并以现场试验为基础,结合数值模拟揭示锚固体损伤演化特征。研究表明:(1)GFRP-MUP平均破坏荷载可达941.7 kN,约为相同规格SB-MUP承载力的1.73倍,从抗拔承载力考虑完全满足工程抗浮要求。(2)极限荷载作用下,GFRP-MUP锚固体被拔出,平均位移达26.1 mm,锚固体–岩体界面是锚固体系的薄弱部位。(3)2种材质微型抗拔桩锚筋剪应力均呈先增大后减小的趋势,其中GFRP筋–锚固体界面剪应力最高可达4.30 MPa,GFRP筋可以作为抗浮结构中钢筋的良好替代品。(4)极限荷载作用下GFRP-MUP锚固体损伤主要集中于孔口以下2.7 m范围内,与SB-MUP相比,宜采用锚固长度更短、锚固体直径更大的微型抗拔桩控制抗浮结构整体位移。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
白晓宇
张英杰
吴泽坤
孙 淦
刘俊伟
闫 楠
关键词 桩基础GFRP筋微型抗拔桩承载性能极限荷载试验内力数值模拟    
Abstract:To investigate the load-carrying performance and load transfer mechanism of glass fiber reinforced polymer micro uplift piles (GFRP-MUP), field ultimate load tests were conducted on both GFRP-MUP and steel-bar micro uplift piles (SB-MUP). Based on the field tests and numerical simulations, the damage evolution characteristics of the anchored solid were revealed. The study demonstrates that: (1) The average destructive load of GFRP-MUP can reach up to 941.7 kN, approximately 1.73 times the bearing capacity of SB-MUP of the same specification, fully meeting the project’s flotation resistance requirements in terms of pullout bearing capacity. (2) Under extreme loading conditions, the GFRP-MUP anchorage body was pulled out with an average displacement of 26.1 mm, identifying the anchorage body-rock interface as the weak part of the anchoring system. (3) The shear stress of the anchor bars in both materials of micro uplift piles initially increases and then decreases, with the highest shear stress at the GFRP bar-anchorage body interface reaching 4.30 MPa. This indicates that GFRP bars can serve as a suitable substitute for steel bars in anti-buoyancy structures. (4) Damage to the GFRP-MUP anchorage body under extreme load is primarily concentrated within 2.7 meters below the orifice. Compared with SB-MUP, it is preferable to use micro uplift piles with shorter anchorage lengths and larger anchorage diameters to control the overall displacement of the anti-buoyancy structure and enhance anchorage efficiency.
Key wordspile foundation    GFRP bar micro uplift pile    load capacity    collapse load test    internal force    numerical simulation
    
引用本文:   
白晓宇,张英杰,吴泽坤,孙 淦,刘俊伟,闫 楠. GFRP筋微型抗拔桩承载性能与荷载传递机制[J]. 岩石力学与工程学报, 2025, 44(6): 1624-1635.
BAI Xiaoyu, ZHANG Yingjie, WU Zekun, SUN Gan, LIU Junwei, YAN Nan. The bearing capacity and load transfer mechanism of GFRP bar micro uplift pile. , 2025, 44(6): 1624-1635.
链接本文:  
https://rockmech.whrsm.ac.cn/CN/10.3724/1000-6915.jrme.2024.0952      或      https://rockmech.whrsm.ac.cn/CN/Y2025/V44/I6/1624
版权所有 © 2005-2016 《岩石力学与工程学报》编辑部
   主办单位:中国岩石力学与工程学会 出版单位:科学出版社
地址:湖北省武汉市武昌小洪山(邮编:430071) 电话:(027)87199250 传真:(027)87199250 E-mail: rock@whrsm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:010-82358270,E-mail: support@magtech.com.cn
鄂公网安备 42010602003581号