[23] |
HINTON G E. A practical guide to training restricted Boltzmann machines[M]. Berlin:Springer,2012:599-619.
|
[33] |
RAMEZANZADEH A. Performance analysis and development of new models for performance prediction of hard rock TBMs in rock mass[Ph. D. Thesis][D]. Lyon:INSA,2005.
|
[3] |
吴鑫林,张晓平,刘泉声,等. TBM岩体可掘性预测及其分级研究[J]. 岩土力学,2020,41(5):1 721-1 729.(WU Xinlin,ZHANG Xiaoping,LIU Quansheng,et al. Prediction and classification of rock mass boreability in TBM tunnel[J]. Rock and Soil Mechanics,2020,41(5):1 721-1 729.(in Chinese))
|
[4] |
杜立杰,齐志冲,韩小亮,等. 基于现场数据的TBM可掘性和掘进性能预测方法[J]. 煤炭学报,2015,40(6):1 284-1 289.(DU Lijie,QI Zhichong,HAN Xiaoliang,et al. Prediction method for the boreability and performance of hard rock TBM based on boring data on site[J]. Journal of China Coal Society,2015,40(6):1 284-1 289.(in Chinese))
|
[6] |
周小雄,龚秋明,殷丽君,等. 基于BLSTM-AM模型的TBM稳定段掘进参数预测[J]. 岩石力学与工程学报,2020,39(增2):3 505-3 515.(ZHOU Xiaoxiong,GONG Qiuming,YIN Lijun,et al. Predicting boring parameters of TBM stable stage based on BLSTM networks combined with attention mechanism[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Supp.2):3 505-3 515.(in Chinese))
|
[9] |
侯少康,刘耀儒,张 凯. 基于IPSO-BP混合模型的TBM掘进参数预测[J]. 岩石力学与工程学报,2020,39(8):1 648-1 657.(HOU Shaokang,LIU Yaoru,ZHANG Kai. Prediction of TBM tunnelling parameters based on IPSO-BP hybrid model[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1 648-1 657.(in Chinese))
|
[13] |
KOOPIALIPOOR M,TOOTOONCHI H,ARMAGHANI D J,et al. Application of deep neural networks in predicting the penetration rate of tunnel boring machines[J]. Bulletin of Engineering Geology and the Environment,2019,78(8):6 347-6 360.
|
[1] |
GONG Q M,YIN L J,MA H S,et al. TBM tunnelling under adverse geological conditions:An overview[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research,2016,57:4-17.
|
[5] |
张哲铭,李晓瑜,姬 建. 基于LS-SVM的TBM掘进参数预测模型[J]. 河海大学学报:自然科学版,2021,49(4):373-379.(ZHANG Zheming,LI Xiaoyu,JI Jian. TBM excavation parameter prediction model based on LS-SVM method[J]. Journal of Hohai University:Natural Sciences,2021,49(4):373-379.(in Chinese))
|
[7] |
LI J H,LI P X,GUO D,et al. Advanced prediction of tunnel boring machine performance based on big data[J]. Geoscience Frontiers,2021,12(1):331-338.
|
[21] |
HINTON G E,OSINDERO S,TEH Y W. A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation,2006,18(7):1 527-1 554.
|
[11] |
GAO B Y,WANG R R,LIN C J,et al. TBM penetration rate prediction based on the long short-term memory neural network[J]. Underground Space,2021,6(6):718-731.
|
[10] |
GAO X J,SHI M L,SONG X G,et al. Recurrent neural networks for real-time prediction of TBM operating parameters[J]. Automation in Construction,2019,98:225-235.
|
[19] |
ADOKO A C,GOKCEOGLU C,YAGIZ S. Bayesian prediction of TBM penetration rate in rock mass[J]. Engineering Geology, 2017,226:245-256.
|
[8] |
李建斌,郑赢豪,荆留杰,等. 基于岩体聚类分级的TBM掘进参数预测方法[J]. 岩石力学与工程学报,2020,39(增2):3 326-3 337. (LI Jianbin,ZHENG Yinghao,JING Liujie,et al. TBM tunneling parameters prediction method based on clustering classification of rock mass[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Supp.2):3 326-3 337.(in Chinese))
|
[15] |
ORAEE K,KHORAMI M T,HOSSEINI N. Prediction of the penetration rate of tbm using adaptive neuro fuzzy inference system (ANFIS)[C]// 2012 SME Annual Meeting and Exhibit 2012(SME 2012):From Mine to Market. [S. l.]:[s. n.],2012:297-302.
|
[18] |
SALIMI A,ESMAEILI M. Utilizing of linear and non-linear prediction tools for evaluation of penetration rate of Tunnel Boring Machine in hard rock condition[J]. International Journal of Mining and Mineral Engineering,2013,4(3):249-264.
|
[28] |
HASSANPOUR J,VANANI G A A,ROSTAMI J,et al. Evaluation of common TBM performance prediction models based on field data from the second lot of Zagros water conveyance tunnel(ZWCT2)[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,2016,52:147-156.
|
[2] |
HUANG X,LIU Q S,SHI K,et al. Application and prospect of hard rock TBM for deep roadway construction in coal mines[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research,2018,73:105-126.
|
[12] |
POURHASHEMI S M,AHANGARI K,HASSANPOUR J,et al. Evaluating the influence of engineering geological parameters on TBM performance during grinding process in limestone strata[J]. Bulletin of Engineering Geology and the Environment,2021,80(4):3 023-3 040.
|
[22] |
ACKLEY D H,HINTON G E,SEJNOWSKI T J. A learning algorithm for Boltzmann machines[J]. Cognitive Science,1985,9(1):147-169.
|
[32] |
GRAHAM P C. Rock exploration for machine manufacturers[J]. Exploration for Rock Engineering,1976,6(1):173-180.
|
[14] |
GHASEMI E,YAGIZ S,ATAEI M. Predicting penetration rate of hard rock tunnel boring machine using fuzzy logic[J]. Bulletin of Engineering Geology and the Environment,2014,73(1):23-35.
|
[16] |
YAGIZ S,GOKCEOGLU C,SEZER E,et al. Application of two non-linear prediction tools to the estimation of tunnel boring machine performance[J]. Engineering Applications of Artificial Intelligence,2009,22(4/5):808-814.
|
[17] |
GHOLAMI M,SHAHRIAR K,SHARIFZADEH M,et al. A comparison of artificial neural network and multiple regression analysis in TBM performance prediction[C]// ISRM Regional Symposium—7th Asian Rock Mechanics Symposium. [S. l.]:International Society for Rock Mechanics and Rock Engineering,2012:15-19.
|
[24] |
张全太,刘泉声,黄 兴. TBM净掘进速率预测模型及多指标评价方法研究[J]. 煤炭工程,2021,53(5):107-113.(ZHANG Quantai,LIU Quansheng,HUANG Xing. Prediction model and multi-index evaluation method for TBM penetration rate[J]. Coal Engineering,2021,53(5):107-113.(in Chinese))
|
[26] |
HASSANPOUR J,ROSTAMI J,KHAMEHCHIYAN M,et al. TBM performance analysis in pyroclastic rocks:a case history of karaj water conveyance tunnel[J]. Rock Mechanics and Rock Engineering,2010,43(4):427-445.
|
[27] |
HASSANPOUR J,ROSTAMI J,KHAMEHCHIYAN M,et al. Developing new equations for TBM performance prediction in carbonate-argillaceous rocks:a case history of Nowsood water conveyance tunnel[J]. Geomechanics and Geoengineering,2009,4(4):287-297.
|
[29] |
王 攀. 硬岩掘进机可掘进性预测分析方法研究[硕士学位论文][D]. 天津:天津大学,2014.(WANG Pan. Research on penetrability prediction analysis method of tunneling boring machine[M. S. Thesis][D]. Tianjin:Tianjin University,2014.(in Chinese))
|
[31] |
LIN H,KANG W H,OH J,et al. Estimation of in-situ maximum horizontal principal stress magnitudes from borehole breakout data using machine learning[J]. International Journal of Rock Mechanics and Mining Sciences,2020,126:104199.
|
[34] |
FARROKH E,ROSTAMI J,LAUGHTON C. Study of various models for estimation of penetration rate of hard rock TBMs[J]. Tunnelling and Underground Space Technology,2012,30:110-123.
|
[20] |
YAGIZ S,KARAHAN H. Prediction of hard rock TBM penetration rate using particle swarm optimization[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(3):427-433.
|
[25] |
谢学斌,李德玄,孔令燕,等. 基于CRITIC-XGB算法的岩爆倾向等级预测模型[J]. 岩石力学与工程学报,2020,39(10):1 975- 1 982.(XIE Xuebin,LI Dexuan,KONG Lingyan,et al. Rockburst propensity prediction model based on CRITIC-XGB algorithm[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(10):1 975-1 982.(in Chinese))
|
[35] |
秦康剑. 极化码在5G应用场景下的编译码算法研究[博士学位论文][D]. 杭州:浙江大学,2020.(QIN Kangjian. Research on the polar coding and decoding algorithms under 5G application scenarios[Ph. D. Thesis][D]. Hangzhou:Zhejiang University,2020.(in Chinese))
|
[30] |
刘建平. 深部复合地层TBM施工性能预测研究[博士学位论文][D]. 北京:中国科学院大学,2017.(LIU Jianping. Study of TBM performance prediction in deep mixed ground[Ph. D. Thesis][D]. Beijing:University of Chinese Academy of Sciences,2017.(in Chinese))
|
[36] |
JING L J,LI J B,ZHANG N,et al. A TBM advance rate prediction method considering the effects of operating factors[J]. Tunnelling and Underground Space Technology,2021,107:103620.
|