Abstract:Based on the fact that elastic strain energy is the internal mechanism of rock failure,the internal relationship between elastic strain energy and abrupt structural failure in the process of rock deformation is firstly discussed,and it is pointed out that the strength criteria are essentially the type of strength criteria of elastic strain energy,and the fundamental reason for the poor calculation accuracy and applicability of these strength criteria is that the Poisson?s ratio of rock failure under any stress level is always regarded as 0.5. A material parameter is introduced,and the generalized strength criterion is established based on the classical strength criterion. The results show that the generalized strength criterion is a set of strength criteria with the introduced parameter as the parameter,rather than a single strength criterion,and the generalized strength criterion degenerates into the corresponding strength criterion when the introduced parameter is equal to 0.5. True triaxial test results show that the calculation accuracy of generalized strength criterion is higher and more suited to the failure mechanism of rock,but classical strength criterion has influence on the calculation accuracy of corresponding generalized strength criterion. Further discussion shows that the generalized strength criterion can directly reflect the influence of elastic modulus of rock mass,strain energy released by earthquake and supporting system on the stability of rock mass. The generalized strength criterion breaks through the assumption that the Poisson?s ratio is equal to 0.5 in the case of material failure in the classical strength criterion,which is of great significance for the accurate quantitative analysis of material failure characteristics.
郭建强,卢雪峰,杨前冬,蒋建国,陈建行,蒋 磊,伍安杰. 基于弹性应变能岩石强度准则的建立及验证[J]. 岩石力学与工程学报, 2021, 40(S2): 3147-3155.
GUO Jianqiang,LU Xuefeng,YANG Qiandong,JIANG Jianguo,CHEN Jianhang,JIANG Lei,WU Anjie. Establishment of rock strength criteria based on the elastic strain energy and its validation. , 2021, 40(S2): 3147-3155.
ZIENKIEWICZ O C. The finite element method in engineering science[M]. London:Mcgraw-Hill,1979:67-82.
[13]
郭建强,刘新荣,黄武锋,等. 基于弹性应变能的Mohr-Coulomb强度准则讨论[J]. 同济大学学报:自然科学版,2018,46(9):1 168-1 174.(GUO Jianqiang,LIU Xinrong,HUANG Wufeng,et al. Discussion on M-C strength criterion based on elastic strain energy[J]. Journal of Tongji University:Natural Science,2018,46(9):1 168-1 174.(in Chinese))
[1]
YU M. Advances in strength theories for materials under complex stress state in the 20th century[J]. Applied Mechanics Reviews,2002,55(3):169-218.
[11]
HOEK E,BROWN E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1 165-1 186.
[9]
ZHANG L Y,ZHU H H. Three-dimensional Hoek-Brown strength criterion for rocks[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2007,133(9):1 128-1 135.
[2]
邱士利,冯夏庭,张传庆,等. 均质各向同性硬岩统一应变能强度准则的建立及验证[J]. 岩石力学与工程学报,2013,32(4):714-727.(QIU Shili,FENG Xiating,ZHANG Chuanqing,et al. Establishment of unified strain energy strength criterion of homogeneous and isotropic hard rocks and its validation[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(4):714-727.(in Chinese))
[4]
郑颖人,沈珠江,龚晓南. 岩土塑性力学原理[M]. 北京:中国建筑工业出版社,2002:58-61.(ZHENG Yingren,SHEN Zhujiang,GONG Xiaonan. The principles of geotechnical plastic mechanics[M]. Beijing:China Architecture and Building Press,2002:58-61.(in Chinese))
[5]
DESAI C S,SOMASUNDARAM S,FRANTZISKONIS G. A hierarchical approach for constitutive modeling of geologic materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1986,10(3):225-257.
[6]
姚仰平,路德春,周安楠,等. 广义非线性强度理论及其变换应力空间[J]. 中国科学:E 辑,2004,34(11):1 283-1 299.(YAO Yangping,LU Dechun,ZHOU Annan,et al. Generalized nonlinear strength theory and transformed stress space[J]. Science in China:Ser. E,2004,34(11):1 283-1 299.(in Chinese))
[8]
谢和平,彭瑞东,鞠 杨,等. 岩石破坏的能量分析初探[J]. 岩石力学与工程学报,2005,24(15):2 603-2 608.(XIE Heping,PENG Ruidong,JU Yang,et al. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(15):2 603-2 608(in Chinese))
[10]
朱合华,张 琦,章连洋. Hoer-Brown 强度准则研究进展与应用综述[J]. 岩石力学与工程学报,2013,32(10):1 945-1 963.(ZHU Hehua,ZHANG Qi,ZHANG Lianyang. Review of research progresses and applications of Hoek-Brown strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(10):1 945-1 963.(in Chinese))
[12]
郭建强,刘新荣. 强度准则与岩爆判据统一的研究[J]. 岩石力学与工程学报,2018,37(增1):3 340-3 352.(GUO Jianqiang,LIU Xinrong. Study on the uniformity between strength criterion and rockburst criterion[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(Supp.1):3 340-3 352.(in Chinese))
[14]
马洪岭. 超深地层盐岩地下储气库可行性研究[博士学位论文][D]. 武汉:中国科学院武汉岩土力学研究所,2010.(MA Hongling. Study of feasibility of rock salt underground gas storage in ultra-deep formatios[Ph. D. Thesis][D]. Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,2010.(in Chinese))
[15]
黄润秋,黄 达. 卸荷条件下花岗岩力学特性试验研究[J]. 岩石力学与工程学报,2008,27(11):2 205-2 213.(HUANG Runqiu,HUANG Da. Experimental research on mechanical properties of granites under unloading condition[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(11):2 205-2 213.(in Chinese))
[16]
MOGI K. Experimental rock mechanics[M]. London:Taylor and Francis,2007:83-115.
[18]
AL-AJMI A M,ZIMMERMAN R W. Relation between the Mogi and the Coulomb failure criteria[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(3):431-439.
[7]
谢和平,鞠 杨,黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报,2005,24(17):3 003-3 010.(XIE Heping,JU Yang,LI Liyun. Criteria for strength and structural failure of rocks baded on energy dissipation release principles[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(17):3 003-3 010.(in Chinese))
[17]
周 辉,李 震,杨艳霜,等. 岩石统一能量屈服准则[J]. 岩石力学与工程学报,2013,32(11):2 170-2 184.(ZHOU Hui,LI Zhen,YANG Yanshuang,et al. Unified energy yield criterion of rock[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(11):2 170-2 184.(in Chinese))