[30] |
赵珊珊,何 宁. 基于卷积神经网络的路面裂隙检测[J]. 传感器与微系统,2017,36(11):135–138.(ZHAO Shanshan,HE Ning. Road surface crack detection based on CNN[J]. Transducer and Microsystem Technologies,2017,36(11):135–138.(in Chinese))
|
[1] |
SILVER D,HUANG A,MADDISON C J,et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature,2016,529:484–489.
|
[6] |
HINTON G E,SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(5786):504–507.
|
[26] |
陈立万. 遗传优化BP神经网络在岩石节理图像分割中的应用[J]. 微计算机信息,2010,26(23):211–213.(CHEN Liwan. Application of genetic optimizing BPNN to rock fracture image segmentation[J]. Microcomputer Information,2010,26(23):211–213.(in Chinese))
|
[2] |
BARTON N,LIEN R,LUNDE J. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics,1974,6(4):189–236.
|
[5] |
NASIRI S,KHOSRAVANI M R,WEINBERG K. Fracture mechanics and mechanical fault detection by artificial intelligence methods:a review[J]. Engineering Failure Analysis,2017,81:270–293.
|
[7] |
ELKATATNY S,TARIQ Z,MAHMOUD M,et al. An integrated approach for estimating static Young?s modulus using artificial intelligence tools[J]. Neural Computing and Applications,2019,31(8):4 123–4 133.
|
[8] |
ELKATATNY S. Application of artificial intelligence techniques to estimate the static Poisson's ratio based on wireline Log data[J]. Journal of Energy Resources Technology,2018,140(7):1–8.
|
[37] |
SELINGER P. Potrace:a polygon-based tracing algorithm[J/OL]. http://potrace. sourceforge. net/potrace. pdf,2003.
|
[11] |
DREUZY J R,MéHEUST Y,PICHOT G. Influence of fracture scale heterogeneity on the flow properties of three-dimensional discrete fracture networks(DFN)[J]. Journal of Geophysical Research:Solid Earth,2012,117(B11):1–21.
|
[21] |
苟 量,彭真明. 小波多尺度边缘检测及其在裂隙预测中的应用[J]. 石油地球物理勘探,2005,(3):309–313.(GOU Liang,PENG Zhenming. Multi-scale edge detection of wavelet and application in fracture prediction[J]. Oil Geophysical Prospecting,2005,(3):309–313.(in Chinese))
|
[31] |
KURT H,MAXWELL S,HALBERT W. Multilayer feedforward networks are universal approximators[J]. Neural network,1989,2(5):359–366.
|
[35] |
苑玮琦,薛 丹. 基于机器视觉的隧道衬砌裂隙检测算法综述[J]. 仪器仪表学报,2017,38(12):3 100–3 111.(YUAN Weiqi,XUE Dan. Review of tunnel lining crack detection algorithm based on machine vision[J]. Chinese Journal of Scientific Instrument,2017,38(12):3 100–3 111(in Chinese))
|
[9] |
SONMEZ H,GOKCEOGLU C,NEFESLIOGLU H A,et al. Estimation of rock modulus:for intact rocks with an artificial neural network and for rock masses with a new empirical equation[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(2):224–235.
|
[16] |
王 睿,漆泰岳,雷 波,等. 隧道衬砌裂隙特征提取方法研究[J]. 岩石力学与工程学报,2015,34(6):1 211–1 217.(WANG Rui,QI Taiyue,LEI Bo,et al. Study on the characteristic extraction of tunnel lining cracks[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(6):1 211–1 217.(in Chinese))
|
[19] |
王世芳,车艳丽,李 楠,等. 一种基于多尺度脊边缘的沥青路面裂隙检测算法[J]. 中国公路学报,2017,30(4):32–41.(WANG Shifang,CHE Yanli,LI Nan,et al. Asphalt pavement crack detection algorithm based on multi-scale ridges[J]. China Journal of Highway and Transport,2017,30(4):32–41.(in Chinese))
|
[29] |
ZHANG L,YANG F,ZHANG Y,et al. Road crack detection using deep convolutional neural network[C]// Image Processing(ICIP),2016 IEEE International Conference on. [S. l]:[s. n.],2016:3 708–3 712.
|
[36] |
朱力强,白 彪,王耀东,等. 基于特征分析的地铁隧道裂隙识别算法[J]. 铁道学报,2015,37(5):64–70.(ZHU Liqiang,BAI Biao,WANG Yaodong,et al. Subway tunnel crack identification algorithm based on feature analysis[J]. Journal of the China Railway Society,2015,37(5):64–70.(in Chinese))
|
[3] |
JAEGER J C,COOK N G W,ZIMMERMAN R. Fundamentals of rock mechanics[M]. [S. l.]:John Wiley and Sons,2009:1–8.
|
[10] |
MAJDI A,BEIKI M. Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(2):246–253.
|
[13] |
KRANZ R L. Microcracks in rocks:a review[J]. Tectonophysics,1983,100(1/3):449–480.
|
[15] |
HARTHONG B,SCHOLTèS L,DONZé F V. Strength characterization of rock masses,using a coupled DEM-DFN model[J]. Geophysical Journal International,2012,191(2):467–480.
|
[17] |
王 华,朱 宁,王 祁. 应用计盒维数方法的路面裂隙图像分割[J]. 哈尔滨工业大学学报,2007,(1):142–144.(WANG Hua,ZHU Ning,WANG Qi. Segmentation of pavement cracks using differential box-counting approach[J]. Journal of Harbin Institute of Technology,2007,(1):142–144.(in Chinese))
|
[18] |
刘凡凡,徐国爱,肖 靖,等. 基于连通域相关及Hough变换的公路路面裂隙提取[J]. 北京邮电大学学报,2009,32(2):24–28. (LIU Fanfan,XU Guoai,XIAO Jing,et al. Cracking automatic extraction of pavement based on connected domain correlating and hough transform[J]. Journal of Beijing University of Posts and Telecommunications,2009,32(2):24–28.(in Chinese))
|
[20] |
许薛军,张肖宁. 基于数字图像的混凝土桥梁裂隙检测技术[J]. 湖南大学学报:自然科学版,2013,40(7):34–40.(XU Xuejun,ZHANG Xiaoning. Crack detection of concrete bridges based digital image[J]. Journal of Hunan University:Natural Sciences,2013,40(7):34–40.(in Chinese))
|
[23] |
闫东阳,明冬萍. 基于自动多种子区域生长的遥感影像面向对象分割方法[J]. 工程科学学报,2017,39(11):1 735–1 742.(YAN Dongyang,MING Dongping. Object-oriented remote sensing image segmentation based on automatic multiseed region growing algorithm[J]. Chinese Journal of Engineering,2017,39(11):1 735–1 742.(in Chinese))
|
[25] |
崔 冰,王卫星. 基于统计模式识别的岩石节理图像分割方法[J]. 计算机工程与应用,2006,(10):213–215.(CUI Bing,WANG Weixing. Statistical pattern recognition for segmentation of rock joint image[J]. Computer Engineering and Applications,2006,(10):213–215.(in Chinese))
|
[27] |
陶开云,魏 海,廖 敏,等. 一种基于SVM的坝面裂隙损伤智能识别方法[J]. 价值工程,2017,36(19):124–125.(TAO Kaiyun,WEI Hai,LIAO Min,et al. A dam surface crack damage scale intelligent recognition based on SVM method[J]. Value Engineering,2017,36(19):124–125.(in Chinese))
|
[28] |
CHA Y J,CHOI W,BüYüK?ZTüRK,et al. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering,2017,32(5):361–378.
|
[33] |
黄宏伟,李庆桐. 基于深度学习的盾构隧道渗漏水病害图像识别[J]. 岩石力学与工程学报,2017,36(12):2 861–2 871.(HUANG Hongwei,LI Qingtong. Image recognition for water leakage in shield tunnel based on deep learning[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(12):2 861–2 871.(in Chinese))
|
[4] |
AZARAFZA M,GHAZIFARD A,AKGüN H,et al. Development of a 2D and 3D computational algorithm for discontinuity structural geometry identification by artificial intelligence based on image processing techniques[J]. Bulletin of Engineering Geology and the Environment,2019:78(5):3 371–3 383.
|
[12] |
HUI M H,MALLISON B T,FYROZJAEE M H,et al. The upscaling of discrete fracture models for faster,coarse-scale simulations of IOR and EOR processes for fractured reservoirs[C]// SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. [S. l.]:[s. n.],2013:1–15.
|
[14] |
WONG T,WONG R H C,CHAU K T,et al. Microcrack statistics,Weibull distribution and micromechanical modeling of compressive failure in rock[J]. Mechanics of Materials,2006,38(7):664–681.
|
[22] |
朱平哲,黎 蔚. 基于主动生长的断裂裂隙块的连接方法[J]. 计算机应用,2011,31(12):3 382–3 384.(ZHU Pingzhe,LI Wei. Linking algorithm of discontinuity crack block based on autonomous edge growing[J]. Journal of Computer Applications,2011,31(12):3 382–3 384.(in Chinese))
|
[24] |
肖明尧,李雄飞,张小利,等. 基于多尺度的区域生长的图像分割算法[J]. 吉林大学学报:工学版,2017,47(5):1 591–1 597.(XIAO Mingxiao,LI Xiongfei,ZHANG Xiaoli,et al. Medical image segmentation algorithm based on multi-scale region growing[J]. Journal of Jilin University:Engineering and Technology,2017,47(5):1 591–1 597.(in Chinese))
|
[32] |
周飞燕,金林鹏,董 军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1 229–1 251.(ZHOU Feiyan,JIN Linpeng,DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers,2017,40(6):1 229–1 251.(in Chinese))
|
[34] |
薛亚东,李宜城. 基于深度学习的盾构隧道衬砌病害识别方法[J].湖南大学学报:自然科学版,2018,45(3):100–109.(XUE Yadong,LI Yicheng. A method of disease recognition for shield tunnel lining based on deep learning[J]. Journal of Hunan University:Natural Sciences,2018,45(3):100–109.(in Chinese))
|