[1] |
刘建功,李新旺,何 团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报,2020,45(1):141-150.(LIU Jiangong,LI Xinwang,HE Tuan. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society,2020,45(1):141-150.(in Chinese))
|
[2] |
王树帅,李永亮,李 清,等. 基于泰波理论的矸石级配系数对充填材料性能的影响[J]. 采矿与安全工程学报,2022,39(4):683-692.(WANG Shushuai,LI Yongliang,LI Qing,et al. Influence of gangue gradation coefficient on the performance of filling material based on Talbol theory[J]. Journal of Mining and Safety Engineering,2022,39(4):683-692.(in Chinese))
|
[3] |
杜兆文,陈绍杰,尹大伟,等. 氯盐侵蚀环境下膏体充填体稳定性试验研究[J]. 中国矿业大学学报,2021,50(3):532-538.(DU Zhaowen,CHEN Shaojie,YIN Dawei,et al. Experimental study of stability of paste backfill under chloride erosion environment[J]. Journal of China University of Mining and Technology,2021,50(3):532-538.(in Chinese))
|
[4] |
张吉雄,张 强,巨 峰,等. 煤矿“采选充+X”绿色化开采技术体系与工程实践[J]. 煤炭学报,2019,44(1):64-73.(ZHANG Jixiong,ZHANG Qiang,JU Feng,et al. Practice and technique of green mining with integration of mining ,dressing,backfilling and X in coal resources[J]. Journal of China Coal Society,2019,44(1):64-73.(in Chinese))
|
[5] |
戚庭野,冯国瑞,张新军,等. 电阻率膏体充填效果评价方法在新阳煤矿的应用研究[J]. 采矿与安全工程学报,2017,34(2):302-309.(QI Tingye,FENG Guorui,ZHANG Xinjun,et al. The application of resistivity evaluating filling effect method in Xinyang coal mine[J]. Journal of Mining and Safety Engineering,2017,34(2):302-309.(in Chinese))
|
[6] |
李 典,冯国瑞,郭育霞,等. 基于响应面法的充填体强度增长规律分析[J]. 煤炭学报,2016,41(2):392-398.(LI Dian,FENG Guorui,GUO Yuxia,et al. Analysis on the strength increase law of filling material based on response surface method[J]. Journal of China Coal Society,2016,41(2):392-398.(in Chinese))
|
[7] |
杨柳华,李金仓,尹升华,等. 充填料浆中气泡作用机制及其流变特性演变规律[J]. 煤炭学报,2024,(待刊).(YANG Liuhua,LI Jincang,YIN Shenghua,et al. The mechanism of bubble action in backfill slurry and the evolution of its rheological properties[J]. Journal of China Coal Society,2024,to be pressed.(in Chinese))
|
[8] |
贾林刚,张华兴. 长壁充填开采充填体稳定性研究[J]. 采矿与安全工程学报,2019,36(6):1 234-1 239.(JIA Lingang,ZHANG Huaxing. Stability of backfill in long wall filling mining[J]. Journal of Mining and Safety Engineering,2019,36(6):1 234-1 239.(in Chinese))
|
[9] |
邓代强,姚中亮,朱永建,等. 胶结充填体强度预测及水泥消耗量反演计算[J]. 中国矿业大学学报,2013,42(1):39-44.(DENG Daiqiang,YAO Zhongliang,ZHU Yongjian,et al. Forecasting cemented backfill strength:Back calculation of cement dosage[J]. Journal of China University of Mining and Technology,2013,42(1):39-44.(in Chinese))
|
[10] |
甘德清,张雅洁,刘志义,等. 胶结充填体早期损伤对后期力学性能影响机制研究[J]. 岩石力学与工程学报,2023,42(4):821-832.(GAN Deqing,ZHANG Yajie,LIU Zhiyi,et al. Study on the mechanism of the influence of early damage of cemented backfill on later mechanical properties[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(4):821-832.(in Chinese))
|
[11] |
吴疆宇,靖洪文,浦 海,等. 分形矸石胶结充填体的宏细观力学特性[J]. 岩石力学与工程学报,2021,40(10):2 083-2 100.(WU Jiangyu,JING Hongwen,PU Hai,et al. Macroscopic and mesoscopic mechanical properties of cemented waste rock backfill using fractal gangue[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(10):2 083-2 100.(in Chinese))
|
[12] |
周林邦,孙星海,刘 泽,等. 大掺量粉煤灰基矿井充填材料的制备、工作性能与微观结构的研究[J]. 煤炭学报,2023,48(12):4 536-4 548.(ZHOU Linsang,SUN Xinghai,LIU Ze,et al. Study on preparation,working performance and microstructure of coal mine filling material with large amount of fly ash[J]. Journal of China Coal Society,2023,48(12):4 536-4 548.(in Chinese))
|
[13] |
金爱兵,王 杰,陈帅军,等. 基于不同粒径分布尾砂的充填体强度及损伤特性研究[J]. 岩土力学,2022,43(11):3 083-3 093.(JIN Aibing,WANG Jie,CHEN Shuaijun,et al. Strength and damage characteristics of tailings filling body with different particle size distributions[J]. Rock and Soil Mechanics,2022,43(11):3 083-3 093. (in Chinese))
|
[14] |
寇云鹏,郭沫川,谭玉叶,等. 分级细尾砂胶结充填体早期水化放热及强度演化特性[J]. 工程科学学报,2023,45(8):1 293-1 303. (KOU Yunpeng,GUO Mochuan,TAN Yuye,et al. Early hydration heat release and strength evolution of cemented backfill with graded fine tailings[J]. Chinese Journal of Engineering,2023,45(8):1 293-1 303.(in Chinese))
|
[15] |
胡亚飞,李克庆,韩 斌,等. 基于响应面法-满意度准则的混合骨料充填体强度发展与优化分析[J]. 中南大学学报:自然科学版,2022,53(2):620-630.(HU Yafei,LI Keqing,HAN Bin,et al. Strength development and optimization analysis of mixed aggregate backfill based on RSM-DF[J]. Journal of Central South University:Science and Technology,2022,53(2):620-630.(in Chinese))
|
[16] |
郭育霞,冉洪宇,冯国瑞,等. 酸性环境中矸石胶结充填体强度及徐变特征[J]. 采矿与安全工程学报,2021,38(2):361-369.(GUO Yuxia,RAN Hongyu,FENG Guorui,et al. Strength and creep characteristics of cemented gangue backfill in acid environment[J]. Journal of Mining and Safety Engineering,2021,38(2):361-369.(in Chinese))
|
[17] |
徐文彬,万昌兵,田喜春. 温度裂隙对充填体强度耦合效应及裂纹扩展模式[J]. 采矿与安全工程学报,2018,35(3):612-619.(XU Wenbin,WAN Changbing,TIAN Xichun. Coupling effect of temperature and fracture on the strength and crack propagation mode of backfill mass[J]. Journal of Mining and Safety Engineering,2018,35(3):612-619.(in Chinese))
|
[18] |
赵 丽,孙艳芳,杨志斌,等. 煤矸石去除矿井水中水溶性有机物及氨氮的实验研究[J]. 煤炭学报,2018,43(1):236-241.(ZHAO Li,SUN Yanfang,YANG Zhibin,et al. Removal efficiencies of dissolved organic matter and ammonium in coal mine water by coal gangue through column experiments[J]. Journal of China Coal Society,2018,43(1):236-241.(in Chinese))
|
[19] |
陈绍杰,刘久潭,汪 锋,等. 基于PCA-RA的滨海矿井水源识别技术研究[J]. 煤炭科学技术,2021,49(2):217-225.(CHEN Shaojie,LIU Jiutan,WANG Feng,et al. Technological research on water source identification of coastal coalmines based on PCA-RA[J]. Coal Science and Technology,2021,49(2):217-225.(in Chinese))
|
[20] |
温卓越,杜兆文,李帅乾. 基于不同浓度氯盐作用下充填膏体时效性特征研究[J]. 煤炭科学技术,2024,(待刊).(WEN Zhuoyue,DU Zhaowen,LI Shuaiqian. Research on the time-dependent stability of filling paste under the action of different concentrations of chloride salts[J]. Coal Science and Technology,2024,to be Pressed.(in Chinese))
|
[21] |
路承功,乔宏霞,魏智强,等. 盐渍土地区混凝土加速损伤劣化机制及基于Wiener过程可靠性分析[J]. 中国矿业大学学报,2021,50(2):265-272.(LU Chenggong,QIAO Hongxia,WEl Zhiqiang,et al. Accelerated damage and deterioration mechanism of concrete in saline soil area and reliability analysis based on Wiener process[J]. Journal of China University of Mining and Technology,2021,50(2):265-272.(in Chinese))
|
[22] |
郭丽萍,徐燕慧,陈 波,等. 氯盐溶液干湿循环条件下高延性水泥基复合材料微裂缝的自愈合特性与微观机制[J]. 硅酸盐学报,2019,47(7):874-883.(GUO Liping,XU Yanhui,CHEN Bo,et al. Self-healing characteristics and micro-mechanism of high ductility cementitious composites micro-cracks under chloride salt wet-dry cycles[J]. Journal of the Chinese Ceramic Society,2019,47(7):874-883.(in Chinese))
|
[23] |
邹笃建,覃珊珊,刘铁军,等. 多离子溶液浸泡环境下氯离子在砂浆中的扩散性能[J]. 硅酸盐学报,2020,48(11):1 817-1 823.(ZOU Dujian,QIN Shanshan,LIU Tiejun,et al. Chloride ion diffusion in cement mortar in multi-ion solutions with various ions[J]. Journal of the Chinese Ceramic Society,2020,48(11):1 817-1 823.(in Chinese))
|
[24] |
徐存东,程 昱,王荣荣,等. 带初始冻融损伤的混凝土材料受盐冻作用下性能劣化分析[J]. 工程科学与技术,2019,51(1):17-26.(XU Cundong,CHENG Yu,WANG Rongrong,et al. Analysis of performance deterioration of concrete material with initial freeze-thaw damage under salt-freezing condition[J]. Advanced Engineering Sciences,2019,51(1):17-26.(in Chinese))
|
[25] |
张立明,余红发. 干湿循环次数对氯离子扩散系数的影响[J]. 湖南大学学报:自然科学版,2014,41(3):26-30.(ZHANG Liming,YU Hongfa. Influence of dry-wet cycles on chloride diffusion coefficient[J]. Journal of Hunan University:Natural Science,2014,41(3):26-30.(in Chinese))
|
[26] |
鲍玖文,孔令艳,张心钰,等. 应变硬化水泥基复合材料氯盐传输行为的细观数值分析[J]. 复合材料学报,2024,41(4):2 137-2 147. (BAO Jiuwen,KONG Lingyan,ZHANG Xinyu,et al. Mesoscale numerical analysis of chloride ingress behavior of strain hardening cement-based composites[J]. Acta Materiae Compositae Sinica,2024,41(4):2 137-2 147.(in Chinese))
|
[27] |
温震江,肖柏林,韦寒波,等. 基于能量匹配关系确定胶结充填体固化时间及合理强度[J]. 岩石力学与工程学报,2021,40(增1):2 701-2 707.(WEN Zhenjiang,XIAO Bolin,WEI Hanbo,et al. Determination of solidification time and reasonable strength of cemented backfill based on energy matching relationship[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Supp.1):2 701-2 707.(in Chinese))
|
[28] |
郭育霞,赵永辉,冯国瑞,等. 矸石胶结充填体单轴压缩损伤破坏尺寸效应研究[J]. 岩石力学与工程学报,2021,40(12):2 434-2 444. (GUO Yuxia,ZHAO Yonghui,FENG Guorui,et al. Study on damage size effect of cemented gangue backfill body under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(12):2 434-2 444.(in Chinese))
|
[29] |
龚 囱,赵 坤,包 涵,等. 红砂岩蠕变破坏声发射震源演化及其分形特征[J]. 岩土力学,2021,42(10):2 683-2 695.(GONG Cong,ZHAO Kun,BAO Han,et al. Acoustic emission source evolution and fractal features during creep failure of red sandstone[J]. Rock and Soil Mechanics,2021,42(10):2 683-2 695.(in Chinese))
|
[30] |
刘京红,杨跃飞,谢 剑,等. 不同初始孔隙率混凝土的声发射试验及损伤分形特征分析[J]. 北京理工大学学报,2018,38(12):1 231-1 236.(LIU Jinghong,YANG Yuefei,XIE Jian,et al. Acoustic emission test and damage fractal characteristics analysis of concrete with different initial porosity[J]. Transactions of Beijing Institute of Technology,2018,38 (12):1 231-1 236.(in Chinese))
|
[31] |
宋广信,杨丽辉,胡春阳,等. 基于分形理论的玻璃纤维增强树脂复合材料-混凝土组合梁损伤特性[J]. 复合材料学报,2021,38(6):1 870-1 881.(SONG Guangxin,YANG Lihui,HU Chunyang,et al. Damage characteristics of glass fiber reinforced polymer-concrete composite beams based on fractal theory[J]. Acta Materiae Compositae Sinica,2021,38(6):1 870-1 881.(in Chinese))
|
[32] |
赵 奎,杨道学,曾 鹏,等. 单轴压缩条件下花岗岩声学信号频域特征分析[J]. 岩土工程学报,2020,42(12):2 189-2 197.(ZHAO Kui,YANG Daoxue,ZENG Peng,et al. Frequency-domain characteristics of acoustic signals of granite under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering,2020,42(12):2 189-2 197.(in Chinese))
|
[33] |
高 萌,刘娟红,吴爱祥. 等. 典型氯盐环境中富水充填材料腐蚀及劣化机制[J]. 中南大学学报:自然科学版,2016,47(8):2 776-2 783.(GAO Meng,LIU Juanhong,WU Aixiang,et al. Corrosion and deterioration mechanism of rich-water filling materials in typical chloride salt environment[J]. Journal of Central South University:Science and Technology,2016,47(8):2 776-2 783.(in Chinese))
|
[34] |
王鹏刚,莫 芮,隋晓萌,等. 混凝土中氯盐-硫酸盐耦合侵蚀的化学-损伤-传输模型研究进展[J]. 硅酸盐学报,2022,50(2):512-521.(WANG Penggang,MO Rui,SUI Xiaomeng,et al. Chemo-damage-transport model of combined chloride-sulfate attack in concrete[J]. Journal of the Chinese Ceramic Society,2022,50(2):512-521.(in Chinese))
|
[35] |
钱维民,苏 骏,李 扬,等. 超低温和氯盐作用对超高韧性水泥基复合材料碳化性能的影响[J]. 复合材料学报,2023,40(6):3 486-3 498.(QIAN Weimin,SU Jun,LI Yang,et al. Effect of ultra-low temperature and chloride on carbonation performance of ultra-high toughness cement-based composite[J]. Acta Materiae Compositae Sinica,2023,40(6):3 486-3 498.(in Chinese))
|
[36] |
史天尧,陈星宇,张 敏,等. 水泥基材料中氯离子结合机制及其影响因素研究进展[J]. 硅酸盐通报,2021,40(1):13-24.(SHI Tianyao,CHEN Xingyu,ZHANG Min,et al. Mechanism of chloride binding and its influence factors in cement-based materials[J]. Bulletin of the Chinese Ceramic Society,2021,40(1):13-24.(in Chinese))
|
[37] |
王 雪,王 全,张 滨,等. 钢渣作为钾盐矿充填料胶结剂的固化机制[J]. 工程科学学报,2018,40(10):1 177-1 186.(WANG Xue1,WANG Quan,ZHANG Bin,et al. Hydration mechanism of using steel slag as binder for backfill materials in potash mines[J]. Chinese Journal of Engineering,2018,40(10):1 177-1 186.(in Chinese))
|
[38] |
肖 佳,郭明磊,王大富,等. 基于不同阳离子条件下硅酸盐水泥氯离子固化性能研究[J]. 硅酸盐通报,2016,35(9):2 956-2 961. (XIAO Jia,GUO Minglei,WANG Dafu,et al. Chloride binding capacity of portland cement under the condition of different cations[J]. Bulletin of the Chinese Ceramic Society,2016,35(9):2 956-2 961.(in Chinese))
|
[39] |
天 娇,郭清海. 水铝钙石类阴离子黏土在水污染处理领域应用的研究现状[J]. 环境化学,2013,32(8):1 571-1 579.(TIAN Jiao,GUO Qinghai. Research status of the application of hydrocalumite anionic clay in the field of water pollution treatment[J]. Environmental Chemistry,2013,32(8):1 571-1 579.(in Chinese))
|