[1] |
段良策,殷 奇. 沉井设计与施工[M]. 上海:同济大学出版社,2006:1-10.(DUAN Liangce,YIN Qi. Design and construction of caissons[M]. Shanghai:Tongji University Press,2006:1-10.(in Chinese))
|
[2] |
李军堂,秦顺全,张瑞霞. 桥梁深水基础的发展和展望[J]. 桥梁建设,2020,50(3):17-24.(LI Juntang,QIN Shunquan,ZHANG Ruixia. Developments and prospects of deep water foundations for bridge[J]. Bridge Construction,2020,50(3):17-24.(in Chinese))
|
[3] |
施 洲,刘东东,纪 锋,等. 超大型沉井基础的施工风险评估[J]. 西南交通大学学报,2021,56(6):1 241-1 249.(SHI Zhou,LIU Dongdong,JI Feng,et al. Construction risk assessment of super-large open caisson foundation[J]. Journal of Southwest Jiaotong University,2021,56(6):1 241-1 249.(in Chinese))
|
[4] |
穆保岗,朱建民,龚维明. 大型沉井设计、施工及监测[M]. 北京:中国建筑工业出版社,2015:1-21.(MU Baogang,ZHU Jianmin,GONG Weiming. Design,construction and monitoring of large open caissons[M]. Beijing:China Architecture and Building Press,2015:1-21.(in Chinese))
|
[5] |
李孟豪. 沉井下沉过程中刃脚承载力空间分布特性研究[硕士学位论文][D]. 成都:西南交通大学,2019.(LI Menghao. Study on spatial distribution stress of foot blade during caisson sinking in water[M. S. Thesis][D]. Chengdu:Southwest Jiaotong University,2019.(in Chinese))
|
[6] |
褚晶磊. 沉井动态下沉侧摩阻力空间分布大型模型试验研究[硕士学位论文][D]. 成都:西南交通大学,2019.(CHU Jinglei. Large scale model test study on spatial distribution of side friction of caisson during dynamic sinking[M. S. Thesis][D]. Chengdu:Southwest Jiaotong University,2019.(in Chinese))
|
[7] |
张治成,邓燕羚,郑锋利,等. 深厚软土地区大型沉井突沉行为分析[J]. 地下空间与工程学报,2020,16(3):933-943.(ZHANG Zhicheng,DENG Yanling,ZHENG Fengli,et al. Analysis on sudden sinking behaviors of massive open caisson in deep-thick soft clay area[J]. Chinese Journal of Underground Space and Engineering,2020,16(3):933-943.(in Chinese))
|
[8] |
李今保,姜 涛,石先旺,等. 某旋流池沉井施工及失稳倾斜原因分析及处理[J]. 工业建筑,2012,42(9):167-172.(LI Jinbao,JIANG Tao,SHI Xianwang,et al. The caisson construction of a swirl pool and its instability tilt analysis and treatment[J]. Industrial Construction,2012,42(9):167-172.(in Chinese))
|
[9] |
LI J,CHEN S X,YU F,et al. Mechanics and deformation characteristics of an oversized inclined caisson foundation when being reused[J]. Ocean Engineering,2022,248:110780.
|
[10] |
LAI F W,LIU S Y,LI Y L,et al. A new installation technology of large diameter deeply-buried caissons:Practical application and observed performance[J]. Tunnelling and Underground Space Technology,2022,125:104507.
|
[11] |
ROYSTON R,SHEIL B B,BYRNE B W. Monitoring the construction of a large-diameter caisson in sand[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering,2020,175(3):1-17.
|
[12] |
YAN X,ZHAN W,HU Z,et al. Field study on deformation and stress characteristics of large open caisson during excavation in deep marine soft clay[J]. Advances in Civil Engineering,2021,2020:7656068.
|
[13] |
陈培帅. 深厚淤泥层大型陆上沉井施工控制技术研究[博士学位论文][D]. 西安:长安大学,2021.(CHEN Peishuai. Research on key technology of large land caisson in deep silt overburden[Ph D. Thesis][D]. Xi?an:Chang?an University,2021.(in Chinese))
|
[14] |
徐鹏飞,李耀良,徐 伟. 压入式沉井施工对环境影响的现场监测研究[J]. 岩土力学,2014,35(4):1 084-1 094.(XU Pengfei,LI Yaoliang,XU Wei. Field measurement and analysis of influence of jacked open caisson construction on environments[J]. Rock and Soil Mechanics,2014,35(4):1 084-1 094.(in Chinese))
|
[15] |
龚维明,朱建民,穆保岗,等. 南京长江四桥北锚碇沉井首次降排水下沉研究[J]. 岩土工程学报,2010,32(增2):537-540.(GONG Weiming,ZHU Jianming,MU Baogang,et al. Dewater sinking of north anchorage caisson of Fourth Nanjing Yangtze River Bridge[J]. Chinese Journal of Geotechnical Engineering,2010,32(Supp.2):537-540.(in Chinese))
|
[16] |
董晓朋. 超深大沉井施工期间结构内力试验研究[硕士学位论文][D]. 成都:西南交通大学,2018.(DONG Xiaopeng. Experimental research on structural internal force of the ultra-deep and large caisson during construction[M. S. Thesis][D]. Chengdu:Southwest Jiaotong University,2018.(in Chinese))
|
[17] |
邱锡鹏. 神经网络与深度学习[M]. 北京:机械工业出版社,2020:4-22.(QIU Xipeng. Neural networks and deep learning[M]. Beijing:China Machine Press,2020:4-22.(in Chinese))
|
[18] |
MAHMOODZADEH A,MOHAMMADI M,IBRAHIM H H,et al. Machine learning forecasting models of disc cutters life of tunnel boring machine[J]. Automation in Construction,2021,128:103779.
|
[19] |
XU C,LIU X L,WANG E Z,et al. Prediction of tunnel boring machine operating parameters using various machine learning algorithms[J]. Tunnelling and Underground Space Technology,2021,109:103699.
|
[20] |
吴志军,方立群,翁 磊,等. 基于TBM掘进性能的岩体分级及可掘性等级感知识别方法[J]. 岩石力学与工程学报,2022,41(增1): 2 684-2 699.(WU Zhijun,FANG Liqun,WENG Lei,et al. A classification and boreability perception and recognition method for rock mass based on TBM tunneling performance[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(Supp.1):2 684-2 699.(in Chinese))
|
[21] |
汤志立,徐千军. 基于9种机器学习算法的岩爆预测研究[J]. 岩石力学与工程学报,2020,39(4):773-781.(TANG Zhili,XU Qianjun. Rockburst prediction based on nine machine learning algorithms[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(4):773-781.(in Chinese))
|
[22] |
李明亮,李克钢,秦庆词,等. 岩爆烈度等级预测的机器学习算法模型探讨及选择[J]. 岩石力学与工程学报,2021,40(增1):2 806- 2 816.(LI Mingliang,LI Kegang,QIN Qingci,et al. Discussion and selection of machine learning algorithm model for rockburst intensity grade prediction[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Supp.1):2 806-2 816.(in Chinese))
|
[23] |
周志华. 机器学习[M]. 北京:清华大学出版社,2016:171-196. (ZHOU Zhihua. Machine learning[M]. Beijing:Tsinghua University Press,2020:171-196.(in Chinese))
|
[24] |
仉文岗,唐理斌,陈福勇,等. 基于4种超参数优化算法及随机森林模型预测TBM掘进速度[J]. 应用基础与工程科学学报,2021,29(5):1 186-1 200.(ZHANG Wengang,TANG Libin,CHEN Fuyong,et al. Prediction for TBM penetration rate using four hyperparameter optimization methods and random forest model[J]. Journal of Basic Science and Engineering,2021,29(5):1 186-1 200.(in Chinese))
|
[25] |
KE Y,DAI Y T,XU M L,et al. Tunnel surface settlement forecasting with ensemble learning[J]. Sustainability,2022,12(1):232.
|
[26] |
刘德军,戴庆庆,左建平,等. 基于Stacking集成算法的岩爆等级预测研究[J]. 岩石力学与工程学报,2022,41(增1):2 915-2 926. (LIU Dejun,DAI Qingqing,ZUO Jianping,et al. Research on rockburst grade prediction based on stacking integrated algorithm[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(Supp.1):2 915-2 926.(in Chinese))
|
[27] |
LV L,CHEN T,DOU J,et al. A hybrid ensemble-based deep-learning framework for landslide susceptibility mapping[J]. International Journal of Applied Earth Observation and Geoinformation,2022,108:102713.
|
[28] |
DOU J,YUNUS A P,BUI D T,et al. Improved landslide assessment using support vector machine with bagging,boosting,and stacking ensemble machine learning framework in a mountainous watershed,Japan[J]. Landslides,2019,39(4):641-658.
|
[29] |
CHEN T,GUESTRIN C. Xgboost:A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:Association for Computing Machinery,2016:785-794.
|
[30] |
周小雄,龚秋明,殷丽君,等. 基于BLSTM-AM模型的TBM稳定段掘进参数预测[J]. 岩石力学与工程学报,2020,39(增2):3 505- 3 515.(ZHOU Xiaoxiong,GONG Qiuming,YIN Lijun,et al. Predicting boring parameters of TBM stable stage based on BLSTM network combined with attention mechanism[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Supp.2):3 505-3 515.(in Chinese))
|
[31] |
巫崇智. 基于XGBoost与LightGBM模型的土体不排水抗剪强度预测研究[硕士学位论文][D]. 重庆:重庆大学,2020.(WU Chongzhi. Soil undrained shear strength prediction based on XGBoost and LightGBM model[M. S. Thesis][D]. Chongqing:Chongqing University,2020.(in Chinese))
|
[32] |
秦顺全,徐 伟,陆勤丰,等. 常泰长江大桥主航道桥总体设计与方案构思[J]. 桥梁建设,2020,50(3):1-10.(QIN Shunquan,XU Wei,LU Qinfeng,et al. Overall design and concept development for main navigational channel bridge of Changtai Changjiang River Bridge[J]. Bridge Construction,2020,50(3):1-10.(in Chinese))
|
[33] |
李小珍,李星星,舒晓峰,等. 常泰长江大桥主桥风-车-线-桥耦合分析[J]. 桥梁建设,2021,51(3):17-24.(LI Xiaozhen,LI Xingxing,SHU Xiaofeng,et al. Analysis of wind-train-track-bridge interaction for main bridge of Changtai Changjiang River Bridge[J]. Bridge Construction,2021,51(3):17-24.(in Chinese))
|
[34] |
秦顺全,谭国宏,陆勤丰,等. 超大沉井基础设计及下沉方法研究[J]. 桥梁建设,2020,50(5):1-9.(QIN Shunquan,TAN Guohong,LU Qinfeng,et al. Research on design and sinking methods for super- large caisson foundation[J]. Bridge Construction,2020,50(5):1-9.(in Chinese))
|
[35] |
郭明伟,董学超,沈孔健,等. 超大沉井基础取土下沉端阻力变化规律研究[J]. 岩石力学与工程学报,2021,40(增1):2 976-2 985. (GUO Mingwei,DONG Xuechao,SHEN Kongjian,et al. Study on the variation of the bottom resistance during sinking stage of super large caisson foundation[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Supp.1):2 976-2 985.(in Chinese))
|