[14] |
赵洪波. 岩爆分类的支持向量机方法[J]. 岩土力学,2005,26(4):642–644.(ZHAO Hongbo. Support vector machine method for rockburst classification[J]. Rock and Soil Mechanics,2005,26(4):642–644.(in Chinese))
|
[10] |
谢和平. 岩爆的分形特征及机制[J]. 岩石力学与工程学报,1993,12(1):28–37.(XIE Heping. Fractal characteristics and mechanism of rockburst[J]. Chinese Journal of Rock Mechanics and Engineering,1993,12(1):28–37.(in Chinese))
|
[32] |
BREIMAN L. Bagging predictors[J]. Machine Learning,1996,24(2):123–140.
|
[2] |
AFRAEI S,SHAHRIAR K,MADANI S H. Developing intelligent classification models for rock burst prediction after recognizing significant predictor variables,Section 1:Literature review and data preprocessing procedure[J]. Tunnelling and Underground Space Technology,2019,83:324–353.
|
[4] |
陈烨开. 基于能量耗散理论的岩石损伤本构关系研究[硕士学位论文][D]. 淮南:安徽理工大学,2020.(CHEN Yekai. Research on constitutive relationship of rock damage based on energy dissipation theory[M. S. Thesis][D]. Huainan:Anhui University of Science and Technology,2020.(in Chinese))
|
[5] |
BIENIAWSKI Z T,DENKHAUS H G,VOGLER U W. Failure of fractured rock[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics,1969,3(6):323–341.
|
[11] |
李玉生. 矿山冲击名词探讨–兼评“冲击地压”[J]. 煤炭学报,1982,3(2):89–95.(LI Yusheng. Discussion on the terminology of mine shock-comment on“burst pressure”[J]. Journal of China Coal Society,1982,3(2):89–95.(in Chinese))
|
[1] |
杨剑锋,乔佩蕊,李永梅,等. 机器学习分类问题及算法研究综述[J]. 统计与决策,2019,35(6):36–40.(YANG Jianfeng,QIAO Peirui,LI Yongmei,et al. A review of machine learning classification problems and algorithms[J]. Statistics and Decision,2019,35(6):36–40.(in Chinese))
|
[3] |
贾义鹏. 岩爆预测方法与理论模型研究[博士学位论文][D]. 杭州:浙江大学,2014.(JIA Yipeng. Research on rockburst prediction methods and theoretical models[Ph. D. Thesis][D]. Hangzhou:Zhejiang University,2014.(in Chinese))
|
[6] |
于 群. 深埋隧洞岩爆孕育过程及预警方法研究[博士学位论文][D]. 大连:大连理工大学,2016.(YU Qun. Research on the process of rockburst in deep-buried tunnels and early warning methods[[Ph. D. Thesis][D]. Dalian:Dalian University of Technology,2016.(in Chinese))
|
[7] |
章梦涛,徐曾和,潘一山,等. 冲击地压和突出的统一失稳理论[J]. 煤炭学报,1991,(4):48–53.(ZHANG Mengtao,XU Zenghe,PAN Yishan,et al. Unified instability theory of rock burst and outburst[J]. Journal of China Coal Society,1991,(4):48–53.(in Chinese))
|
[9] |
乔 趁. 基于突变理论的深埋隧道岩爆危险性预测研究[硕士学位论文][D]. 邯郸:河北工程大学,2018.(QIAO Chen. Research on the prediction of rockburst hazard in deep-buried tunnels based on catastrophe theory[M. S. Thesis][D]. Handan:Hebei University of Engineering,2018.(in Chinese))
|
[12] |
李鹏翔,陈炳瑞,周扬一,等. 硬岩岩爆预测预警研究进展[J]. 煤炭学报,2019,44(增2):447–465.(LI Pengxiang,CHEN Binrui,ZHOU Yangyi,et al. Research progress in hard rock burst prediction and early warning[J]. Journal of China Coal Society,2019,44(Supp.2):447–465.(in Chinese))
|
[17] |
张乐文,张德永,李术才,等. 基于粗糙集理论的遗传–RBF神经网络在岩爆预测中的应用[J]. 岩土力学,2012,33(增1):270–276.(ZHANG Lewen,ZHANG Deyong,LI Shucai,et al. Application of genetic-RBF neural network based on rough set theory in rockburst prediction[J]. Rock and Soil Mechanics,2012,33(Supp.1):270–276.(in Chinese))
|
[23] |
LIANG W Z,DAI B,ZHAO G Y,et al. A scientometric review on rockburst in hard rock:two decades of review from 2000 to 2019[J]. Geofluids,2020,2020:1–17.
|
[8] |
胡 峰. 基于断裂力学和损伤理论的裂隙岩体损伤机制研究[硕士学位论文][D]. 重庆:重庆大学,2015.(HU Feng. Research on damage mechanism of fractured rock mass based on fracture mechanics and damage theory[M. S. Thesis][D]. Chongqing:Chongqing University,2015.(in Chinese))
|
[13] |
冯夏庭. 地下峒室岩爆预报的自适应模式识别方法[J]. 东北大学学报,1994,15(5):471–475.(FENG Xiating. Adaptive pattern recognition method for underground cavern rockburst prediction[J]. Journal of Northeastern University,1994,15(5):471–475.(in Chinese))
|
[15] |
赵国彦,刘 强,刘 超. 岩爆烈度分级预测中的贝叶斯判别分析[J]. 金属矿山,2010,(5):143–147.(ZHAO Guoyan,LIU Qiang,LIU Chao. Bayesian discriminant analysis in rockburst intensity classification prediction[J]. Metal Mine,2010,(5):143–147.(in Chinese))
|
[16] |
DONG L J,LI X B,PENG K. Prediction of rockburst classification using Random Forest[J]. Transactions of Nonferrous Metals Society of China,2013,23(2):472–477.
|
[19] |
郭庆清,刘磊磊,张绍和,等. 基于组合赋权法和聚类分析法的岩爆预测[J]. 长江科学院院报,2013,30(12):54–59.(GUO Qinqing,LIU Leilei,ZHANG Shaohe,et al. Rockburst prediction based on combined weighting method and cluster analysis method[J]. Journal of Yangtze River Scientific Research Institute,2013,30(12):54–59.(in Chinese))
|
[21] |
YIN X,LIU Q S,PAN Y C,et al. Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data:comparison of eight single and ensemble models[J]. Natural Resources Research,2021,30(2):1 795–1 815.
|
[24] |
刘晓悦,季红瑜. 基于AdaBoost-BAS-SVM模型的岩爆预测研究[J]. 金属矿山,2021,45(10):28–34.(LIU Xiaoyue,JI Hongyu. Research on rockburst prediction based on AdaBoost-BAS-SVM model[J]. Metal Mine,2021,45(10):28–34.(in Chinese))
|
[18] |
邱道宏,李术才,张乐文,等. 基于模型可靠性检查的QGA-SVM岩爆倾向性分类研究[J]. 应用基础与工程科学学报,2015,23(5):981–991.(QIU Daohong,LI Shucai, ZHANG Lewen,et al. Research on QGA-SVM rockburst tendency classification based on model reliability check[J]. Journal of Applied Basic Science and Engineering,2015,23(5):981–991.(in Chinese))
|
[20] |
ZHANG J F,WANG Y H,SUN Y T,et al. Strength of ensemble learning in multiclass classification of rockburst intensity[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2020,44(13):1 833–1 853.
|
[22] |
WANG S M,ZHOU J,LI C Q,et al. Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques[J]. Journal of Central South University,2021,28(2):527–542.
|
[28] |
张淑清,段晓宁,张立国,等. Tsne降维可视化分析及飞蛾火焰优化ELM算法在电力负荷预测中应用[J]. 中国电机工程学报,2021,41(9):3 120–3 130.(ZHANG Shuqing,DUAN Xiaoning,ZHANG Liguo,et al. Application of Tsne dimensionality reduction visualization analysis and moth flame optimization ELM algorithm in power load forecasting[J]. Proceedings of the Chinese Society of Electrical Engineering,2021,41(9):3 120–3 130.(in Chinese))
|
[31] |
SCHAPIRE R E,FREUND P. Boosting the margin: A new explanation for the effectiveness of voting methods[J]. Annals of Statistics,1998,26(5):1 651–1 686.
|
[25] |
谭文侃,叶义成,胡南燕,等. LOF与改进SMOTE算法组合的强烈岩爆预测[J]. 岩石力学与工程学报,2021,40(6):1 186–1 194. (TAN Wenkan,YE Yicheng,HU Nanyan,et al. Strong rockburst prediction based on the combination of LOF and improved SMOTE algorithm[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1 186–1 194.(in Chinese))
|
[26] |
田 睿,孟海东,陈世江,等. 基于深度神经网络的岩爆烈度分级预测[J]. 煤炭学报,2020,45(增1):191–201.(TIAN Rui,MENG Haidong,CHEN Shijiang,et al. Rockburst intensity classification prediction based on deep neural network[J]. Journal of China Coal Society,2020,45(Supp.1):191–201.(in Chinese))
|
[27] |
WU S C,WU Z G,ZHANG C X. Rock burst prediction probability model based on case analysis[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,2019,93(C):1–15.
|
[30] |
KEARNS M,VALIANT L. Cryptographic limitations on learning Boolean formulae and finite automata[J]. Journal of the ACM,1994,41(1):67–95.
|
[29] |
刘 斌. 基于自注意力机制的文本分类研究[硕士学位论文][D]. 北京:中国地质大学,2020.(LIU Bin. Research on text classification based on self-attention mechanism[M. S. Thesis][D]. Beijing:China University of Geosciences,2020.(in Chinese))
|
[33] |
谢学斌,李德玄,孔令燕,等. 基于CRITIC-XGB算法的岩爆倾向等级预测模型[J]. 岩石力学与工程学报,2020,39(10):1 975–1 982. (XIE Xuebin,LI Dexuan,KONG Linyan,et al. Rockburst tendency grade prediction model based on CRITIC-XGB algorithm[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(10):1 975–1 982.(in Chinese))
|