(1. College of Transportation Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China; 2. Postdoctoral Station of Civil Engineering, Army Engineering University of PLA, Nanjing, Jiangsu 210007, China; 3. Key Laboratory of Reservoir and Dam Safety, Ministry of Water Resources, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu 210024, China; 4. College of Water
Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang 830091, China)
Abstract:Geotextiles are extensively employed for slope reinforcement in granite residual soil regions. However, the static and dynamic shear characteristics of geotextile-granite residual soil interfaces under wet-dry conditions remain inadequately understood. This study conducted monotonic and cyclic shear tests on the interface between geotextile and granite residual soil, considering wet-dry effects. The shear stress-displacement relationships, shear strength parameters, and shear stiffness variations were analyzed with respect to wet-dry cycles and amplitudes. The results indicate that during monotonic shear processes, interface roughness progressively increases with wet-dry cycles. The wet-dry cycle has a more pronounced impact on the strength parameters of the geotextile-soil interface compared to the wet-dry amplitude. With the increasing number of shear cycles, the hysteresis curve of the geotextile-soil interface expands outward, and the interface shear stiffness increases, while the damping ratio decreases. Cyclic shear cycles have a limited effect on strength parameters, whereas wet-dry cycles primarily influence the cyclic shear modulus. Cohesion is more significantly affected by cyclic shear history than the internal friction angle. Additionally, repeated wet-dry processes weaken the structural integrity of granite residual soil and enhance the interlocking action of the geotextile-soil interface. The cyclic shear process can reduce the roughness of the geotextile-soil interface, which explains the observed trend of initially increasing and subsequently decreasing interface shear characteristics under varying wet-dry histories.
刘 越,陈东霞,王 晖,等. 干湿循环下考虑裂隙发育的残积土边坡响应分析[J]. 岩土力学,2021,42(7):1 933-1 943.(LIU Yue,CHEN Dongxia,WANG Hui,et al. Response analysis of residual soil slope considering crack development under drying-wetting cycles[J]. Rock and Soil Mechanics,2021,42(7):1 933-1 943. (in Chinese))
[2]
安 然,孔令伟,黎澄生,等. 炎热多雨气候下花岗岩残积土的强度衰减与微结构损伤规律[J]. 岩石力学与工程学报,2020,39(9):1 902-1 911.(AN Ran,KONG Lingwei,LI Chengsheng,et al. Strength attenuation and microstructure damage law of granite residual soil under hot and rainy climate[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(9):1 902-1 911.(in Chinese))
[3]
于佳静,陈东霞,王 晖,等. 干湿循环下花岗岩残积土抗剪强度及边坡稳定性分析[J]. 厦门大学学报:自然科学版,2019,58(4):614-620.(YU Jiajing,CHEN Dongxia,WANG Hui,et al. Analysis of the shear strength of granite residual soil and slope stability under wetting-drying cycles[J]. Journal of Xiamen University:Natural Science,2019,58(4):614-620.(in Chinese))
[4]
方 宁,周 峰,宋 著,等. 含水率对花岗岩残积土承载力影响的试验研究[J]. 南京工业大学学报:自然科学版,2020,42(2):231-236.(FANG Ning,ZHOU Feng,SONG Zhu,et al. Experimental research on influence of water content on bearing capacity of granite residual soil[J]. Journal of Nanjing Tech University:Natural Science,2020,42(2):231-236.(in Chinese))
[5]
LIU S H,GAO C,FAN K,et al. Repairing expansive soil channel slope with soil bags[J]. Geosynthetics International,2022,30(5):450-459.
[6]
刘斯宏,沈超敏,程德虎,等. 土工袋加固膨胀土边坡降雨-日晒循环试验研究[J]. 岩土力学,2022,43(增2):35-42.(LIU Sihong,SHEN Chaomin,CHENG Dehu,et al. Model test of expansive soil slope with soilbags during rainfall-insolation cycles[J]. Rock and Soil Mechanics,2022,43(Supp.2):35-42.(in Chinese))
[7]
刘飞禹,陈舒祺,孙宏磊,等. 不同含水率花岗岩残积土-格栅界面剪切特性[J]. 同济大学学报:自然科学版,2023,51(2):222-228.(LIU Feiyu,CHEN Shuqi,SUN Honglei,et al. Shear characteristics of granite residual geogrid-soil interface with different water contents[J]. Journal of Tongji University:Natural Science,2023,51(2):222-228.(in Chinese))
[8]
刘飞禹,孔剑捷,姚嘉敏. 含石量和压实度对格栅-土石混合体界面剪切特性的影响[J]. 岩土工程学报,2023,45(5):903-911.(LIU Feiyu,KONG Jianjie,YAO Jiamin,et al. Effects of rock content and degree of compaction on interface shear characteristics of geogrid-soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering,2023,45(5):903-911.(in Chinese))
[9]
王 军,林 旭,符洪涛. 砂土-格栅筋土界面特性的本构模型研究[J]. 岩土力学,2014,35(增2):75-84.(WANG Jun,LIN Xu,FU Hongtao. Study of constitutive model of sand-geogrid interface behavior in geogrid/geotextile reinforced soil[J]. Rock and Soil Mechanics,2014,35(Supp.2):75-84.(in Chinese))
[10]
LIU F Y,FU J,WANG J,et al. Effect of the particle size ratio on macro- and mesoscopic shear characteristics of the geogrid-reinforced rubber and sand mixture interface[J]. Geotextiles and Geomembranes,2022,50(4):779-793.
[11]
侯 娟,邢 行,徐 东,等. 土工膜-土工布界面动力剪切特性试验研究[J]. 岩土力学,2022,43(2):365-376.(HOU Juan,XING Xing,XU Dong,et al. Experimental study on dynamic shear characteristics of a geomembrane-geotextile interface[J]. Rock and Soil Mechanics,2022,43(2):365-376.(in Chinese))
[12]
VIEIRA C S,LOPES M L,CALDEIRA L M. Sand-geotextile interface characterisation through monotonic and cyclic direct shear tests[J]. Geosynthetics International,2013,20(1):26-38.
[13]
徐 超,陈洪帅,石志龙,等. 筋-土界面力学特性的水平循环剪切试验研究[J]. 岩土力学,2013,34(6):1 553-1 559.(XU Chao,CHEN Hongshuai,SHI Zhilong,et al. Research on the mechanical behavior of soil-reinforcement interface by horizontal cyclic shear test[J]. Rock and Soil Mechanics,2013,34(6):1 553-1 559.(in Chinese))
[14]
中华人民共和国国家标准编写组. GB/T 50123—2019 土工试验方法标准[S]. 北京:中国计划出版社,2019.(The National Standards Compilation Group of People?s Republic of China. GB/T 50123—2019 Standard for soil test methods[S]. Beijing:China Plan Publishing House,2019.(in Chinese))
[15]
朱 锐,黄英豪,张 晨,等. 季节性供水渠道边坡稳定性研究[J].水利水运工程学报,2021,42(1):124-132.(ZHU Rui,HUANG Yinghao,ZHANG Chen,et al. Research on the slope stability of seasonally running canals[J]. Hydro-Science and Engineering,2021,42(1):124-132.(in Chinese))
[16]
朱 锐,蔡正银,黄英豪,等. 冻融过程对高寒区渠道基土力学特性的影响[J]. 农业工程学报,2021,37(14):108-116.(ZHU Rui,CAI Zhengyin,HUANG Yinghao,et al. Effect of freezing-thawing process on the mechanical properties of canal foundation soils in cold regions[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(14):108-116.(in Chinese))
[17]
AN R,KONG L W,ZHANG X W,et al. Effects of dry-wet cycles on three-dimensional pore structure and permeability characteristics of granite residual soil using X-ray micro computed tomography[J]. Journal of Rock Mechanics and Geotechnical Engineering,2022,14(3):851-860.
[18]
王雪奎,李东军,朱耀庭,等. 基于数字图像技术的黏性土颗粒形状分析[J]. 岩土工程学报,2020,42(增2):168-171.(WANG Xuekui,LI Dongjun,ZHU Yaoting,et al. Particle shape analysis of clay based on digital image technology[J]. Chinese Journal of Geotechnical Engineering,2020,42(Supp.2):168-171.(in Chinese))
[19]
刘俊伟,赵彦平,韩金朋,等. 循环荷载下纤维加筋土与结构界面剪切特性研究[J]. 水利水电技术,2020,51(1):159-165.(LIU Junwei,ZHAO Yanping,HAN Jinpeng,et al. Study on shear characteristics of interface between fiber-reinforced soil and structure under cyclic load[J]. Water Resources and Hydropower Engineering,2020,51(1):159-165.(in Chinese))
[20]
李水江,姚嘉敏,刘飞禹,等. 法向循环荷载下土石混合料-织物界面剪切特性研究[J]. 岩土力学,2023,44(11):3 082-3 090.(LI Shuijiang,YAO Jiamin,LIU Feiyu,et al. Study of constitutive model of sand-geogrid interface behavior in geogrid/geotextile reinforced soil[J]. Rock and Soil Mechanics,2023,44(11):3 082-3 090.(in Chinese))
[21]
郭嘉骏,姜求平,邵 枫. 分形理论引导的图像临界差异感知阈值估计[J]. 中国图象图形学报,2022,27(11):3 303-3 315.(GUO Jiajun,JIANG Qiuping,SHAO Feng. Fractal-guided JND threshold estimation for natural images[J]. Journal of Image and Graphics,2022,27(11):3 303-3 315.(in Chinese))
[22]
MANDELBORT B B. The fractal geometry of nature[M]. New York: W. H. Freeman and Company,1982:10-24.
[23]
纪文栋,张宇亭,王 洋,等. 循环单剪下珊瑚钙质砂和普通硅质砂剪切特性对比研究[J]. 岩土力学,2018,39(增1):282-288.(JI Wendong,ZHANG Yuting,WANG Yang,et al. Comparative study of shear performance between coral sand and siliceous sand in cycles simple shear test[J]. Rock and Soil Mechanics,2018,39(Supp.1):282-288.(in Chinese))
[24]
齐 添,孔剑捷,刘飞禹. 循环剪切对格栅-土石混合体界面特性的影响[J]. 岩土力学,2023,44(9):2 593-2 602.(QI Tian,KONG Jianjie,LIU Feiyu. Effect of cyclic shear on interface characteristics of geogrid-soil-gravel mixture[J]. Rock and Soil Mechanics,2023,44(9):2 593-2 602.(in Chinese))
[25]
李丽华,李孜健,肖衡林,等. 土工格栅加筋建筑垃圾土循环剪切试验[J]. 吉林大学学报:工学版,2024,54(6):1 612-1 623.(LI Lihua,LI Zijian,XIAO Henglin,et al. Experiment on cyclic shear of geosynthetic reinforced construction waste soil[J]. Journal of Jilin University:Engineering and Technology,2024,54(6):1 612-1 623.(in Chinese))
[26]
吴帅峰,蔡 红,魏迎奇,等. 土石混合料剪切机制及抗剪强度分量特性研究[J]. 岩土工程学报,2019,41(增2):230-234.(WU Shuaifeng,CAI Hong,WEI Yingqi,et al. Shear mechanism and shear strength component characteristics of soil-stone mixtures[J]. Chinese Journal of Geotechnical Engineering,2019,41(Supp.2):230-234. (in Chinese))
[27]
管珊珊. 不同含水率对花岗岩残积土承载性状的影响分析[硕士学位论文][D]. 南京:南京工业大学,2017.(GUAN Shanshan. Effect of different moisture contents on bearing capacity of granite residual Soil[M. S. Thesis][D]. Nanjing:Nanjing Tech University,2017.(in Chinese))
[28]
康 馨,赵士成,刘 鹏. 干湿循环下花岗岩残积土胶结物溶蚀-微结构演化规律与力学行为[J]. 湖南大学学报:自然科学版,2024,51(1):159-169.(KANG Xin,ZHAO Shicheng,LIU Peng. Cement-microstructure evolution law and mechanical behavior of granite residual soils under multiple drying-wetting cycles[J]. Journal of Hunan University:Natural Science,2024,51(1):159-169.(in Chinese))