1 Graham P C. Rock Exploration for machine manufacturers,in explora- tion for rock engineering[A]. In:Bieniawski Z T ed. Proceedings of the Symposium[C]. Rotterdam:A. A. Balkema,1976,173~180
2 Farmer I W,Glossop N H. Mechanics of disc cutter penetration[J]. Tunnels and Tunnelling,1980,12:622~625
3 Hughes H M. The relative cuttability of coal measures rock[J]. Mining Science and Technology,1986,3:95~109
4 Nelson P P. Tunnel boring machine performance in sedimentary rock[Doctorate Dissertation][D]. USA:The Graduate School of Cornelll University,1983
5 O¢Rourke J E,Spring J E,Coudray S V. Geotechnical parameters and tunnel boring machine performance at Goodwill Tunnel,California[A]. In:Nelson,Laubach eds. Rock Mechanics Models and Measurements Challenges from Industry,Proc. of the 1st North American Rock Mechanics Symposium,The University of Texas at Austin[C]. Rotterdam:A. A. Balkema,1994
6 Rostami J. Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure [Doctorate Dissertation][D]. Golden,Colorado,USA:Dept. of Mining Engineering,Colorado School of Mines,1997
7 Cheema S. Development of a rock mass boreability index for the performance of tunnel boring machines[Doctorate Dissertation][D]. Golden,Colorado,USA:Dept. of Mining Engineering,Colorado School of Mines, 1999
8 Hoek E,Marinos P,Benissi M. Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses[J]. The Case of the Athens Schist Formation Bull Engg. Geol. Env.,1998,57(2):151~160
9 Bruland A. Hard rock tunnel boring[Doctorate Thesis][D]. Trondheim:Norwegian University of Science and Technology,1998
10 Barton N. TBM Tunnelling in Jointed and Faulted Rock[M]. Rotterdam:A. A. Balkema,2000
11 Nelson P P,Yousof A A,Laughton C. Improved strategies for TBM performance prediction and project management[A]. In:RETC Proceedings,Chapter 54[C]. [s. l.]:[s. n.],1999,963~979
12 Grima M A,Bruines P A,Verhoef P N W. Modeling tunnel boring machine performance by Neuro-Fuzzy Methods[J]. Tunnelling and Underground Space Technology,2000,15(3):259~269
13 Bruines P A. The use of neurofuzzy modeling for performance prediction of tunnel boring machines[A]. In:Adachi Swets,Zeitlinger ed. Modern Tunnelling Science and Technology[C]. [s. l.]:[s. n.],2001,583~588
14 Gong Q M. Development of a rock mass classification scheme for tunnel boring[R]. Singapore:Nanyang Technological University, 2003