2025年5月1日 星期四
岩石力学与工程学报  2025, Vol. 44 Issue (3): 521-542    DOI: 10.3724/1000-6915.jrme.2024.0591
  学术论文 本期目录 | 过刊浏览 | 高级检索 |
含相变低温岩体水–热–力特性研究进展与展望
刘乃飞1,2,3,4,李  宁2,汪双杰4,宋战平1,3,王莉平2,3,徐拴海5
(1. 西安建筑科技大学 土木工程学院,陕西 西安  710055;2. 西安理工大学 岩土工程研究所,陕西 西安  710048;3. 陕西省岩土与地下空间
工程重点实验室,陕西 西安  710055;4. 中交第一公路勘察设计研究有限公司 博士后科研工作站,陕西 西安  710075;
5. 中煤科工集团 西安研究院有限公司,陕西 西安  710077)
Progress and prospects of thermo-hydro-mechanical characteristics of low temperature rock mass with phase transition
LIU Naifei1,2,3,4,LI Ning2,WANG Shuangjie4,SONG Zhanping1,3,WANG Liping2,3,XU Shuanhai5
(1. School of Civil Engineering,Xi?an University of Architecture and Technology,Xi?an,Shaanxi 710055,China;2. Institute of Geotechnical Engineering,Xi?an University of Technology,Xi?an,Shaanxi 710048,China;3. Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering,Xi?an,Shaanxi 710055,China;4. Post-Doctoral Research Center,
CCCC First Highway Consultants Co.,Ltd.,Xi?an,Shaanxi 710075,China;5. Xi?an Research Institute,
CCTEG,Xi?an,Shaanxi 710077,China)
全文: PDF (2793 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 裂隙使得岩体和土体的水热力特性明显不同,现有冻土理论难以解决低温岩体工程的冻融灾害问题。冻融过程中裂隙水的迁移机制、裂隙部位的传热机制、裂隙参数的动态演化以及非均质岩体水–热–力多场耦合作用是研究低温岩体冻融灾害的关键。从低温岩体水分迁移特性、热质传输特性、物理力学特性和水–热–力耦合特性4个方面分析了含相变低温岩体的研究进展。国内外在低温岩体方面的研究成果丰硕,但未充分考虑裂隙导致的非均质性和相变条件下裂隙部位水热力性能的特殊性;尚未探明低温岩体裂隙部位的水热迁移机制,缺乏真正意义上的用于研究低温裂隙岩体水热力特性的大型试验设备;虽开展了冻胀裂隙扩展研究,但尚未建立起考虑冻融全过程以及冻融循环作用的裂隙动态演化方程;低温岩体冻融灾害涉及微观层面的水热迁移、细观层面的裂隙演化和宏观层面的变形破坏,目前尚未建立起综合微观–细观–宏观成果的水–热–力耦合模型。要探明低温岩体的水热力特性,应以冰水相变为切入点,紧扣裂隙引起的非连续特性,研发大型试验设备、探明裂隙水热迁移机制、推导裂隙演化方程、构建水–热–力耦合模型,开发数值模拟程序,最终实现对低温岩体冻融灾害的仿真模拟研究。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘乃飞1
2
3
4
李 宁2
汪双杰4
宋战平1
3
王莉平2
3
徐拴海5
关键词 岩石力学低温裂隙岩体冰&ndash水相变水分迁移热质传输物理力学特性水&ndash热&ndash力耦合    
Abstract:The fractures make the thermal-hydro-mechanical(THM) characteristics of rock mass and soil mass obviously different,and the existing frozen soil theory is difficult to solve the freeze-thaw disaster problem of low temperature rock mass. The migration mechanism of fracture water,the heat transfer mechanism of fracture,the dynamic evolution of fracture characteristics and the multi-field coupling of thermal-hydro-mechanical in heterogeneous rock mass are the key to study the freeze-thaw disaster of low-temperature rock mass. In this paper,the research progress of low-temperature rock mass with phase change is analyzed from four aspects: water migration mechanism,heat and mass transport characteristics,physical and mechanical characteristics and THM coupling characteristics. The research results on low-temperature rock mass at home and abroad are abundant,but the heterogeneity caused by fractures and the special characteristics of the THM properties of fractures under the condition of phase change are not fully considered. The mechanism of hydrothermal migration in fracture of low-temperature rock mass has not been proved,and there is lack of large-scale test equipment for studying the THM characteristics of low-temperature fractured rock mass. Although the fracture propagation caused by frost heave has been studied,the dynamic fracture evolution equation considering the whole process of freeze-thaw and the freeze-thaw cycle has not been established. The freeze-thaw disaster of low-temperature rock mass involves hydrothermal migration at the micro-level,fracture evolution at the meso-level and deformation and failure at the macro-level. So far,no THM coupling model has been established which integrates the results of micro-meso- macro. In order to explore the THM characteristics of low-temperature rock mass,the ice-water phase should be taken as the breakthrough point,the discontinuous characteristics caused by fractures should be closely linked,large-scale laboratory equipment should be developed,the mechanism of hydrothermal migration in fractures should be verified,the fracture evolution equation should be derived,the THM coupling model should be constructed,and numerical simulation programs should be developed,to finally realize the simulation of freeze-thaw disasters in low-temperature rock mass.
Key wordsrock mechanics    low temperature fractured rock mass    ice-water phase transition    water migration    heat and mass transfer    physical and mechanical properties    thermal-hydro-mechanical(THM) coupling
    
引用本文:   
刘乃飞1,2,3,4,李 宁2,汪双杰4,宋战平1,3,王莉平2,3,徐拴海5. 含相变低温岩体水–热–力特性研究进展与展望[J]. 岩石力学与工程学报, 2025, 44(3): 521-542.
LIU Naifei1,2,3,4,LI Ning2,WANG Shuangjie4,SONG Zhanping1,3,WANG Liping2,3,XU Shuanhai5. Progress and prospects of thermo-hydro-mechanical characteristics of low temperature rock mass with phase transition. , 2025, 44(3): 521-542.
链接本文:  
https://rockmech.whrsm.ac.cn/CN/10.3724/1000-6915.jrme.2024.0591      或      https://rockmech.whrsm.ac.cn/CN/Y2025/V44/I3/521
版权所有 © 2005-2016 《岩石力学与工程学报》编辑部
   主办单位:中国岩石力学与工程学会 出版单位:科学出版社
地址:湖北省武汉市武昌小洪山(邮编:430071) 电话:(027)87199250 传真:(027)87199250 E-mail: rock@whrsm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:010-82358270,E-mail: support@magtech.com.cn
鄂公网安备 42010602003581号