[17] |
LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444.
|
[27] |
VAPNIK V. The Nature of statistical learning theory[M]. 2nd ed. New York:Springer,1999:181-190.
|
[19] |
郭 超,刘 烨. 多色彩空间下的岩石图像识别研究[J]. 科学技术与工程,2014,14(18):247-251.(GUO Chao,LIU Ye. Recognition of Rock Images Based on Multiple Color Spaces[J]. Science Technology and Engineering,2014,14(18):247-251.(in Chinese))
|
[26] |
PAN S J,YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering,2009,22(10):1 345-1 359.
|
[1] |
佘诗刚,林 鹏. 中国岩石工程若干进展与挑战[J]. 岩石力学与工程学报,2014,33(3):433-457.(SHE Shigang,LIN Peng. Some developments and challenging issues in rock engineering field in China[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(3):433-457.(in Chinese))
|
[8] |
汪 洋. 北京白查A型花岗岩的地球化学特征及其成因与构造指示意义[J]. 岩石学报,2009,25(1):13-24.(WANG Yang. Geochemistry of the baicha a-type granite in Beijing municipality:petrogenetic and tectonic implications[J]. Acta Petrologica Sinica,2009,25(1):13-24.(in Chinese))
|
[9] |
冉明佳,钟康惠,罗明非,等. 西藏冈底斯带东段石炭纪构造环境讨论[J]. 地质论评,2012,58(2):250-258.(RAN Mingjia,ZHONG Kanghui,LUO Mingfei,et al. A discussion on carboniferous tectonic settings in the eastern sector of gangdise belt,Xizang(Tibet)[J]. Geological Review,2012,58(2):250-258.(in Chinese))
|
[11] |
刘 烨,程国建,马 微,等. 基于铸体薄片图像颜色空间与形态学梯度的岩石分类[J]. 中南大学学报:自然科学版,2016,47(7):2 375-2 382.(LIU Ye,CHENG Guojian,MA Wei,et al. Rock classification based on features form color space and morphological gradient of rock thin section image[J]. Journal of Central South University:Science and Technology,2016,47(7):2 357-2 382.(in Chinese))
|
[18] |
张 野,李明超,韩 帅. 基于岩石图像深度学习的岩性自动识别与分类方法[J]. 岩石学报,2018,34(2):333-342.(ZHANG Ye,LI Mingchao,HAN Shuai. Automatic identification and classification in lithology based on deep learning in rock images[J]. Acta Petrologica Sinica,2018,34(2):333-342.(in Chinese))
|
[21] |
SINGH T N,KAINTHOLA A,VENKATESH A. Correlation between point load index and uniaxial compressive strength for different rock types[J]. Rock Mechanics and Rock Engineering,2012,45(2):259-264.
|
[3] |
HACK R,HUISMAN M. Estimating the intact rock strength of a rock mass by simple means[C]// Proceedings of the 9th Congress of the International Association for Engineering Geology and the Environment. Durban,South Africa:[s. n.],2002:1 971-1 977.
|
[5] |
王子娟,刘新荣,傅 晏,等. 两种岩石试件的“超声-回弹-密度”综合筛选法研究[J]. 岩石力学与工程学报,2018,37(增1):3 575-3 583.(WANG Zijuan,LIU Xinrong,Fu Yan,et al. Comprehensive screening method of “ultrasonic-rebound-density”for two kinds of rock specimens[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(Supp.1):3 575-3 583.(in Chinese))
|
[7] |
郭清宏,周永章,曹姝旻,等. 广绿玉玉石的矿物学研究[J]. 中山大学学报(自然科学版),2010,49(3):146-151.(GUO Qinghong,ZHOU Yongzhang,CAO Shumin,et al. Study on Mineralogy of Guangning Jade[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2010,49(3):146-151.(in Chinese))
|
[10] |
高 阳,王永诗,李孝军,等. 基于岩石孔喉结构的致密砂岩分类方法——以济阳坳陷古近系为例[J]. 油气地质与采收率,2019,26(2):32-41.(GAO Yang,WANG Yongshi,LI Xiaojun,et al. Classification method of tight sandstone based on pore throat structure:a case study of paleogene in Jiyang depression[J]. Petroleum Geology and Recovery Efficiency,2019,26(2):32-41.(in Chinese))
|
[13] |
ESTEVA A,KUPREL B,NOVOA RA,et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature,2017,542(7639):115-118.
|
[15] |
SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]// 3rd International Conference on Learning Representations. San Diego,CA:[s. n.],2015:1-14.
|
[20] |
KAMANI M,AJALLOEIAN R. Evaluation of the mechanical degradation of carbonate aggregate by rock strength tests[J]. Journal of Rock Mechanics and Geotechnical Engineering,2019,11(1):121-134.
|
[23] |
TSIAMBAOS G ,SABATAKAKIS N . Considerations on strength of intact sedimentary rocks[J]. Engineering Geology,2004,72(3/4):261-273.
|
[25] |
周 胜,刘三民. 基于迁移学习的数据流分类研究综述[J]. 天津理工大学学报,2019,35(3):24-29.(ZHOU Sheng,LIU Sanmin. A survey of data stream classification research based on transfer learning[J]. Journal of Tianjin University of Technology,2019,35(3):24-29.(in Chinese))
|
[4] |
MARINOS P,HOEK E. Estimating the geotechnical properties of heterogeneous rock masses such as flysch[J]. Bulletin of engineering geology and the environment,2001,60(2):85-92.
|
[6] |
樊 磊,赵文吉,宫兆宁,等. 基于包络线消除法的岩石光谱对应分析[J]. 吉林大学学报:地球科学版,2012,42(2):575-582.(FAN Lei,ZHAO Wenji,GONG Zhaoning,et al. Correspondence analysis of rock spectra based on continuum removing[J]. Journal of Jilin University:Earth Science Edition,2012,42(2):575-582.(in Chinese))
|
[14] |
SZEGEDY C,VANHOUCKE V,IOFFE S,et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:[s. n.],2016:2 818-2 826.
|
[16] |
KRIZHEVSKY A,SUTSKEVER I,HINTON G E. Imagenet classification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems. Lake Tahoe,NV:[s. n.],2012:1 097-1 105.
|
[24] |
REN Q,WANG G,LI M,et al. Prediction of rock compressive strength using machine learning algorithms based on spectrum analysis of geological hammer[J]. Geotechnical and Geological Engineering,2018,(3):1-15.
|
[2] |
柴 华,李 宁,夏守姬,等. 高清晰岩石结构图像处理方法及其在碳酸盐岩储层评价中的应用[J]. 石油学报,2012,33(增2):154-159.(CHAI Hua,LI Ning,XIA Shouji,et al. High-resolution rock structure image processing method and its applications in carbonate reservoir evaluation[J]. Acta Petrolei Sinica,2012,33(Supp.2):154-159.(in Chinese))
|
[12] |
BIANCO S,BUZZELLI M,MAZZINI D,et al. Deep learning for logo recognition[J]. Neurocomputing,2017,245:23-30.
|
[22] |
SINGH V K ,SINGH D P . Correlation between point load index and compressive strength for quartzite rocks[J]. Geotechnical and Geological Engineering,1993,11(4):269-272.
|