[15] |
鲍跃全,李 惠. 人工智能时代的土木工程[J]. 土木工程学报,2019,52(5):1-11.(BAO Yuequan,LI Hui. Civil engineering in the era of artificial intelligence[J]. China Civil Engineering Journal,2019,52(5):1-11.(in Chinese))
|
[25] |
ZHAO H B. Rockburst prediction using evolutionary support vector machine[C]// Progress in Safety Science and Technology. [S. l.]:[s. n.],2005:494-498.
|
[55] |
BREIMAN L. Stacked regressions[J]. Machine Learning,1996,24(1):49-64.
|
[7] |
HOEK E. Underground excavations in rock[M]. London:The Institute of Mining and Metallurgy,1980:27
|
[47] |
赵洪波. 岩爆分类的支持向量机方法[J]. 岩土力学,2005,26(4):642-644.(ZHAO Hongbo. Support vector machine method for rockburst classification[J]. Rock and Soil Mechanics,2005,26(4):642-644.(in Chinese))
|
[6] |
陶振宇. 高地应力区的岩爆及其判别[J]. 人民长江,1987,18(5):25-32.(TAO Zhenyu. Rock burst in high ground stress area and its identification[J]. People?s Yangtze River,1987,18(5):25-32.(in Chinese))
|
[56] |
GRANDVALET Y. Bagging equalizes influence[J]. Machine Learning,2004,55(3):251-270.
|
[1] |
徐成光. 岩爆预测及防治方法综述[J]. 现代隧道技术,2005,42(6):81-85.(XU Chengguang. Summary of rockburst prediction and prevention methods[J]. Modern Tunnelling Technology,2005,42(6):81-85.(in Chinese))
|
[11] |
李明亮,李克钢,刘月东,等. 基于变异系数与序关分析法-多维正态云模型的岩爆预测[J]. 岩石力学与工程学报,2020,39(增2):3 395-3 402.(LI Mingliang,LI Kegang,LIU Yuedong,et al. Rockburst prediction based on coefficient of variation and sequence analysis method-multi-dimensional normal cloud model[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Supp.2): 3 395-3 402.(in Chinese))
|
[16] |
ZHOU J S,CAI Z Y,DESTECH PUBLICAT I. Overview of data mining based on machine learning[C]// Progress of the International Conference on Computer Science and Communication Engineering (CSCE). [S. l.]:[s. n.],2015:494-498.
|
[21] |
ZHOU J,LI X,MITRI H S. Classification of rockburst in underground projects:comparison of ten supervised learning methods[J]. Journal of Computing in Civil Engineering,2016,30(5):04016003.
|
[26] |
ADOKO A C,GOKCEOGLU C,WU L,et al. Knowledge-based and data-driven fuzzy modeling for rockburst prediction[J]. International Journal of Rock Mechanics and Mining Sciences,2013,61(4):86-95.
|
[31] |
白明洲,王连俊,许兆义. 岩爆危险性预测的神经网络模型及应用研究[J]. 中国安全科学学报,2002,12(4):68-72.(BAI Mingzhou,WANG Lianjun,XU Zhaoyi. Neural network model and application research on rockburst risk prediction[J]. Chinese Safety Science Journal,2002,12(4):68-72.(in Chinese))
|
[36] |
李丽娟. 金川矿山深部岩石岩爆倾向性研究[硕士学位论文][D]. 长沙:中南大学,2009.(LI Lijuan. Research on rock burst tendency of deep rocks in Jinchuan mine[M. S. Thesis][D]. Changsha:Central South University,2009.(in Chinese))
|
[37] |
刘章军,袁秋平,李建林. 模糊概率模型在岩爆烈度分级预测中的应用[J]. 岩石力学与工程学报,2008,27(增1):3 095-3 103.(LIU Zhangjun,YUAN Qiuping,LI Jianlin. Application of fuzzy probability model in rockburst intensity classification prediction[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(Supp.1): 3 095-3 103.(in Chinese))
|
[39] |
孙臣生. 基于改进MATLAB-BP神经网络算法的隧道岩爆预测模型[J]. 重庆交通大学学报:自然科学版,2019,38(10):41-49. (SUN Chensheng. Tunnel rockburst prediction model based on improved MATLAB-BP neural network algorithm[J]. Journal of Chongqing Jiaotong University:Natural Science,2019,38(10):41-49.(in Chinese))
|
[41] |
王万德,张延新. 深部开采岩爆预测的神经网络方法[J]. 河北科技师范学院学报,2007,21(2):35-38.(WANG Wande,ZHANG Yanxin. Neural network method for prediction of rock burst in deep mining[J]. Journal of Hebei Normal University of Science and Technology,2007,21(2):35-38.(in Chinese))
|
[43] |
许梦国,杜子建,姚高辉,等. 程潮铁矿深部开采岩爆预测[J]. 岩石力学与工程学报,2008,27(增1):2 921-2 928.(XU Mengguo,DU Zijian,YAO Gaohui,et al. Rockburst prediction in deep mining of Chengchao Iron Mine[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(Supp.1):2 921-2 928.(in Chinese))
|
[46] |
张乐文,张德永,邱道宏. 基于粗糙集的可拓评判在岩爆预测中的应用[J]. 煤炭学报,2010,35(9):1 461-1 465.(ZHANG Lewen,ZHANG Deyong,QIU Daohong. Application of extension evaluation based on rough set in rockburst prediction[J]. Journal of China Coal Society,2010,35(9):1 461-1 465.(in Chinese))
|
[10] |
王元汉,李卧东,李启光,等. 岩爆预测的模糊数学综合评判方法[J]. 岩石力学与工程学报,1998,17(5):15-23.(WANG Yuanhan,LI Wodong,LI Qiguang,et al. Comprehensive fuzzy mathematics evaluation method for rockburst prediction[J]. Chinese Journal of Rock Mechanics and Engineering,1998,17(5):15-23.(in Chinese))
|
[20] |
DONG L J,LI X B,PENG K. Prediction of rockburst classification using Random Forest[J]. Transactions of Nonferrous Metals Society of China,2013,23(2):472-477.
|
[30] |
SU G S,ZHANG K S,CHEN Z. Rockburst prediction using gaussian process machine learning[C]// Proceedings of the International Conference on Computational Intelligence and Software Engineering. [S. l.]:[s. n.],2009:1-4.
|
[40] |
王吉亮,陈剑平,杨 静,等. 岩爆等级判定的距离判别分析方法及应用[J]. 岩土力学,2009,30(7):2 203-2 208.(WANG Jiliang,CHEN Jianping,YANG Jing,et al. The distance discriminant analysis method and its application for judging rockburst grade[J]. Rock and Soil Mechanics,2009,30(7):2 203-2 208.(in Chinese))
|
[8] |
KIDYBI?SKI A. Bursting liability indices of coal[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1981,18(4):295-304.
|
[18] |
PU Y,APEL D B,XU H. Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier[J]. Tunnelling and Underground Space Technology,2019,90:12-18.
|
[28] |
SUN J,WANG L G,ZHANG H L,et al. Application of fuzzy neural network in predicting the risk of rock burst[J]. Procedia Earth and Planetary Science,2009,1(1):536-543.
|
[38] |
秦乃兵. 用模糊数学方法对岩爆进行预测预报[J]. 工程力学,2001,18(增):734-738.(QIN Naibing. Using fuzzy mathematics method to forecast rockburst[J]. Engineering Mechanics,2001,18(Supp.):734-738.(in Chinese))
|
[48] |
田 睿. 基于机器学习的岩爆烈度等级预测模型研究与应用[博士学位论文][D]. 包头:内蒙古科技大学,2020.(TIAN Rui. Research and application of rockburst intensity prediction model based on machine learning[Ph. D. Thesis][D]. Baotou:Inner Mongolia University of Science and Technology,2020.(in Chinese))
|
[4] |
张传庆,卢景景,陈 珺,等. 岩爆倾向性指标及其相互关系探讨[J]. 岩土力学,2017,38(5):1 397-1 404.(ZHANG Chuanqing,LU Jingjing,CHEN Jun,et al. Discussion on rockburst tendency indexes and their correlation[J]. Rock and Soil Mechanics,2017,38(5): 1 397-1 404.(in Chinese))
|
[14] |
杨莹春,诸 静. 一种新的岩爆分级预报模型及其应用[J]. 煤炭学报,2000,25(2):169-172.(YANG Yingchun,ZHU Jing. A new rockburst classification prediction model and its application[J]. Journal of China Coal Society,2000,25(2):169-172.(in Chinese))
|
[24] |
宫凤强,李夕兵,张 伟. 基于Bayes判别分析方法的地下工程岩爆发生及烈度分级预测[J]. 岩土力学,2010,31(增1):370-379. (GONG Fengqiang,LI Xibing,ZHANG Wei. Rockburst occurrence and intensity classification prediction of underground engineering based on Bayes discriminant analysis method[J]. Rock and Soil Mechanics,2010,31(Supp.1):370-379.(in Chinese))
|
[34] |
葛启发,冯夏庭. 基于AdaBoost组合学习方法的岩爆分类预测研究[J]. 岩土力学,2008,29(4):943-948.(GE Qifa,FENG Xiating. Research on rockburst classification prediction based on AdaBoost combined learning method[J]. Rock and Soil Mechanics,2008,29(4):943-948.(in Chinese))
|
[44] |
薛杨朔,孙志国,于全有. BP神经网络动态预测方法在巷道底板岩爆中的应用[J]. 煤矿安全,2013,44(3):150-152.(XUE Yangshuo,SUN Zhiguo,YU Quanyou. Application of BP neural network dynamic prediction method in roadway floor rockburst[J]. Coal Mine Safety,2013,44(3):150-152.(in Chinese))
|
[54] |
GILLET A, BROSTAUX Y, PALM R. Main models used in logistic regression[J]. Biotechnologie Agronomie Societe Et Environnement,2011,15(3):425-433.
|
[2] |
周青春,李海波,杨春和. 地下工程岩爆及其风险评估综述[J]. 岩土力学,2003,24(增2):669-673.(ZHOU Qingchun,LI Haibo,YANG Chunhe. Summary of underground engineering rock burst and its risk assessment[J]. Rock and Soil Mechanics,2003,24(Supp.2):669-673.(in Chinese))
|
[12] |
刘 鹏,余 斌,曹 辉. 基于多维正态云-CRITIC模型的岩爆倾向性综合评价方法[J]. 岩石力学与工程学报,2020,39(增2):3 432- 3 439.(LIU Peng,YU Bin,CAO Hui. Comprehensive evaluation method of rockburst tendency based on multi-dimensional normal cloud-CRITIC model[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Supp.2):3 432-3 439.(in Chinese))
|
[22] |
汤志立,徐千军. 基于9种机器学习算法的岩爆预测研究[J]. 岩石力学与工程学报,2020,39(4):773-781.(TANG Zhili,XU Qianjun. Research on rockburst prediction based on 9 machine learning algorithms[J]. Chinese Journal of Rock Mechanics and Engineering, 2020,39(4):773-781.(in Chinese))
|
[32] |
蔡嗣经,张禄华,周文略. 深井硬岩矿山岩爆灾害预测研究[J]. 中国安全生产科学技术,2005,1(5):19-22.(CAI Sijing,ZHANG Luhua,ZHOU Wenlue. Research on the prediction of rock burst disasters in deep hard rock mines[J]. China Safety Science and Technology,2005,1(5):19-22.(in Chinese))
|
[42] |
王心飞. 深埋隧道稳定性分析的智能化及非线性研究[博士学位论文][D]. 重庆:重庆大学,2006.(WANG Xinfei. Intelligent and nonlinear research on stability analysis of deep-buried tunnels[Ph. D. Thesis][D]. Chongqing:Chongqing University,2006.(in Chinese))
|
[52] |
张旭东,钱仲文,沈思琪,等. 一种基于LSTM与LGBM的电力负荷预测算法[J]. 系统工程,2019,37(1):152-158.(ZHANG Xudong,QIAN Zhongwen,SHEN Siqi,et al. A power load forecasting algorithm based on LSTM and LGBM[J]. Systems Engineering,2019,37(1):152-158.(in Chinese))
|
[3] |
陈 结,高靖宽,蒲源源,等. 冲击地压预测预警的机器学习方法[J]. 采矿与岩层控制工程学报,2021,3(1):57-68.(CHEN Jie,GAO Jingkuan,PU Yuanyuan,et al. Machine learning method for forecasting and early warning of rock burst[J]. Journal of Mining and Strata Control Engineering,2021,3(1):57-68.(in Chinese))
|
[5] |
RYDER J A. Excess shear stress in the assessment of geologically hazardous situations[J]. Journal of the Southern African Institute of Mining and Metallurgy,1988,88(1):27-39.
|
[9] |
WANG C,WU A,LU H,et al. Predicting rockburst tendency based on fuzzy matter-element model[J]. International Journal of Rock Mechanics and Mining Sciences,2015,75(4):224-232.
|
[13] |
胡建华,尚俊龙,周科平. 岩爆烈度预测的改进物元可拓模型与实例分析[J]. 中国有色金属学报,2013,23(2):495-502.(HU Jianhua,SHANG Junlong,ZHOU Keping. Improved matter-element extension model and case analysis for rockburst intensity prediction[J]. The Chinese Journal of Nonferrous Metals,2013,23(2):495-502.(in Chinese))
|
[17] |
ZHOU J,LI X B,SHI X Z. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines[J]. Safety Science,2012,50(4):629-644.
|
[19] |
苏国韶,宋咏春,燕柳斌. 岩体爆破效应预测的一种新方法[J]. 岩石力学与工程学报,2007,26(增1):3 509-3 514.(SU Guoshao,SONG Yongchun,YAN Liubin. A new method for predicting the effect of rock mass blasting[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(Supp.1):3 509-3 514.(in Chinese))
|
[23] |
田 睿,孟海东,陈世江,等. 基于机器学习的3种岩爆烈度分级预测模型对比研究[J]. 黄金科学技术,2020,28(6):920-929. (TIAN Rui,MENG Haidong,CHEN Shijiang,et al. Comparative study on three rockburst intensity grading prediction models based on machine learning[J]. Gold Science and Technology,2020,28(6):920-929.(in Chinese))
|
[27] |
AFRAEI S,SHAHRIAR K,MADANI S H. Developing intelligent classification models for rock burst prediction after recognizing significant predictor variables,Section 2:Designing classifiers[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,2019,84:522-537.
|
[29] |
LIU R,YE Y,HU N,et al. Classified prediction model of rockburst using rough sets-normal cloud[J]. Neural Computing and Applications,2019,31(12):8 185-8 193.
|
[33] |
陈海军,郦能惠,聂德新,等. 岩爆预测的人工神经网络模型[J]. 岩土工程学报,2002,24(2):229-232.(CHEN Haijun,LI Nenghui,NIE Dexin,et al. Artificial neural network model for rockburst prediction[J]. Chinese Journal of Geotechnical Engineering,2002,24(2):229-232.(in Chinese))
|
[35] |
贾义鹏,吕 庆,尚岳全. 基于粒子群算法和广义回归神经网络的岩爆预测[J]. 岩石力学与工程学报,2013,32(2):343-348.(JIA Yipeng,LU Qing,SHANG Yuequan. Rockburst prediction based on particle swarm optimization and generalized regression neural network[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(2):343-348.(in Chinese))
|
[45] |
张俊峰. 大相岭隧道岩爆灾害分阶段预测与控制技术研究[硕士学位论文][D]. 成都:西南交通大学,2010.(ZHANG Junfeng. Research on staged prediction and control technology of rockburst disaster in Daxiangling Tunnel[M. S. Thesis][D]. Chengdu:Southwest Jiaotong University,2010.(in Chinese))
|
[49] |
王 东. 基于多个元模型的Stacking算法研究与应用[硕士学位论文][D]. 广州:华南理工大学,2020.(WANG Dong. Research and application of stacking algorithm based on multiple metamodels[M. S. Thesis][D]. Guangzhou:South China University of Technology,2020.(in Chinese))
|
[50] |
李 杨,陈子彬,谢光强. 一种基于ExtraTrees的差分隐私保护算法[J]. 计算机工程,2020,46(2):134-140.(LI Yang,CHEN Zibin,XIE Guangqiang. A differential privacy protection algorithm based on ExtraTrees[J]. Computer Engineering,2020,46(2):134-140.(in Chinese))
|
[51] |
PUNMIYA R,CHOE S. Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing[J]. IEEE Trans Smart Grid,2019,10(2):2 326-2 329.
|
[53] |
罗森林,赵惟肖,潘丽敏. 结合加权KNN和自适应牛顿法的稳健Boosting方法[J]. 北京理工大学学报,2021,41(1):112-120. (LUO Senlin,ZHAO Weixiao,PAN Limin. Robust boosting method combining weighted KNN and adaptive Newton method[J]. Journal of Beijing Institute of Technology,2021,41(1):112-120.(in Chinese))
|
[57] |
王 羽,许 强,柴贺军,等. 工程岩爆灾害判别的RBF-AR耦合模型[J]. 吉林大学学报:地球科学版,2013,43(6):1 943-1 949. (WANG Yu,XU Qiang,CHAI Hejun,et al. RBF-AR coupling model for engineering rockburst disaster identification[J]. Journal of Jilin University:Earth Science,2013,43(6):1 943-1 949.(in Chinese))
|