[25] |
赵 川. 基于控制理论的随机需求供应链多级库存系统优化与仿真[博士学位论文][D]. 北京:对外经济贸易大学,2016.(ZHAO Chuan. Optimization and simulation of multi-echelon inventory in supply chain under stochastic demand based on control theory[Ph. D. Thesis][D]. Beijing:University of International Business and Economics,2016.(in Chinese))
|
[1] |
吴开健. 高地应力条件下软岩隧道的变形分析及控制研究[硕士学位论文][D]. 广州:华南理工大学,2016.(WU Kaijian. Under the condition of high ground stress soft rock tunnel deformation analysis and control research[M. S. Thesis][D]. Guangzhou:South China University of Technology,2016.(in Chinese))
|
[23] |
JIANG Y Z,LIU H Z,LIU J Y. LS-SVM-Markov model for dam deformation prediction[J]. Applied Mechanics and Materials,2013,423–426:1 144–1 149.
|
[33] |
YANG X S. Firefly algorithms for multimodal optimization[J]. Mathematics,2009,5792:169–178.
|
[12] |
卜庆为. 基于ARMA时序分析模型的巷道围岩变形预测[J]. 采矿技术,2014,14(1):56–58. (BU Qingwei. Prediction of roadway surrounding rock deformation based on ARMA time series analysis model[J]. Mining Technology,2014,14(1):56–58.(in Chinese))
|
[32] |
YANG X. S. Nature-inspired metaheuristic algorithms[M]. [S. l.]:Luniver Press,2010:79–89.
|
[34] |
YANG X S,DEB S. Eagle strategy using Lévy walk and firefly algorithms for stochastic optimization[J]. Studies in Computational Intelligence,2010,284:101–111.
|
[2] |
张云鹏,李利平,贺 鹏,等. 隧道围岩大变形高斯过程回归预测模型及其工程应用[J]. 科学技术与工程,2018,18(1):122–127. ZHANG Yunpeng,LI Liping,HE Peng,et al. Gaussian process regression prediction model for the big deformation of the tunnel rock and its application[J]. Science Technology and Engineering,2018,18(1):122–127.(in Chinese))
|
[4] |
王新胜,左伟芹,周成涛,等. 基于非齐次指数函数灰色模型的隧道围岩变形预测[J]. 现代隧道技术,2017,54(1):105–109.(WANG Xinsheng,ZUO Weiqin,ZHOU Chengtao,et al. Deformation prediction of tunnel surrounding rock based on non-homogeneous exponential function grey model[J]. Modern Tunnelling Technology,2017,54(1):105–109.(in Chinese))
|
[5] |
WANG X R,WANG Y H. Intelligent direct analysis of physical and mechanical parameters of tunnel surrounding rock based on adaptive immunity algorithm and BP neural network[J]. Journal of Pharmaceutical Analysis,2009,21(1):22–30.
|
[7] |
何庆文,翟明洋. 深埋大断面巷道拱顶变形预测分析及支护优化研究[J]. 化工矿物与加工,2018,47(1):40–43.(HE Qingwen,ZHAI Mingyang. Prediction analysis of vault deformation and support optimization of deep-buried large section tunnel[J]. Industrial Minerals and Processing,2018,47(1):40–43.(in Chinese))
|
[10] |
耿 耘. 地下工程围岩变形的支持向量机预测方法研究[硕士学位论文][D]. 北京:北京交通大学,2014.(GENG Yun. Prediction of surrounding rock deformation for underground excavations by support vector machine[M. S. Thesis][D]. Beijing:Beijing Jiaotong University,2014.(in Chinese))
|
[14] |
王江荣. 加权复合分位数自回归模型在隧道围岩变形预测中的应用[J]. 大地测量与地球动力学,2017,37(5):511–515.(WANG Jiangrong. Application of weighted composite quantile autoregressive model in processing of rock surrounding tunnel displacement data[J]. Journal of Geodesy and Geodynamics,2017,37(5):511–515.(in Chinese))
|
[15] |
王 涛,孙文龙,李 磊. 基于回归分析与灰色理论的围岩变形组合预测[J]. 地下空间与工程学报,2017,13(增1):48–51.(WANG Tao,SUN Wenlong,LI Lei. Study on surrounding rock deformation combined forecasting method based on regression analysis and grey theory[J]. Chinese Journal of Underground Space and Engineering,2017,13(Supp.1):48–51.(in Chinese))
|
[17] |
张 倩,陈 新,周武松,等. GA-BP遗传神经网络在地下厂房变形预测中的应用[J]. 水电能源科学,2016,(6):150–152.(ZHANG Qian,CHEN Xin,ZHOU Wusong,et al. Application of BP neural network based GA optimization in prediction of underground powerhouse deformation[J]. Water Resources and Power,2016,(6):150–152.(in Chinese))
|
[20] |
叶 超. 基于BP神经网络修正的自适应灰色模型的隧道变形预测研究[J]. 铁道标准设计,2017,61(11):76–81.(YE Chao. Research on deformation prediction of tunnel based on adaptive grey model of BP neural network correction[J]. Railway Standard Design,2017,61(11):76–81.(in Chinese))
|
[22] |
WANG D D,QIU G Q,XIE W B,et al. Deformation prediction model of surrounding rock based on GA-LSSVM-markov[J]. Natural Science,2012,4(2):85–90.
|
[3] |
胡 达,黄小林,何 杰. 基于改进灰色理论模型的隧道围岩变形预测[J]. 公路工程,2017,42(5):72–75.(HU Da,HUANG Xiaolin,HE Jie. Prediction of deformation of tunnel surrounding rock based on improved grey theory model[J]. Highway Engineering,2017,42(5):72–75.(in Chinese))
|
[13] |
文 明,张顶立,房 倩,等. 隧道围岩变形的非线性自回归时间序列预测方法研究[J]. 北京交通大学学报,2017,41(4):1–7. (WEN Ming,ZHANG Dingli,FANG Qian,et al. Research on nonlinear auto regressive time series method for predicting deformation of surrounding rock in tunnel[J]. Journal of Beijing Jiaotong University,2017,41(4):1–7.(in Chinese))
|
[27] |
黄 凯,陈渠森,鞠博晓. GNSS自动化监测系统的大坝变形预测方法研究[J]. 测绘通报,2018,(1):147–150.(HUANG Kai,CHEN Qusen,JU Boxiao. Study on prediction method of dam deformation for GNSS automatic monitoring system[J]. Bulletin of Surveying and Mapping,2018,(1):147–150.(in Chinese))
|
[30] |
李析男,王 宁,梅亚东,等. NAR神经网络的应用与检验——以城市居民生活需水定额为例[J]. 灌溉排水学报,2017,36(11):122–128.(LI Xinan,WANG Ning,MEI Yadong,et al. Application and test of NAR neural network-taking the quota of living water demand of urban residents as an example[J]. Journal of Irrigation and Drainage,2017,36(11):122–128.(in Chinese))
|
[35] |
李彦苍,周书敬,吴 超. 仿生智能算法及其在土木工程中的应用[M]. 北京:科学出版社,2015:153–166.(LI Yancang,ZHOU Shujing,WU Chao. Bionic intelligent algorithm and its application in Civil Engineering[M]. Beijing:Science Press,2015:153–166.(in Chinese))
|
[37] |
李一玄. 萤火虫算法参数研究[J]. 物流工程与管理,2015,(9):195–197.(LI Yixuan. Parameter study on firefly algorithm[J]. Logistics Engineering and Management,2015,(9):195–197.(in Chinese))
|
[6] |
田明杰,牟智恒,仇文革. 基于BP神经网络的隧道稳定性分析研究[J]. 土木工程学报,2017,50(增2):260–266.(TIAN Mingjie,MOU Zhiheng,QIU Wenge. Research of the model comprehensive judgement for tunnel stability based on BP neural network[J]. China Civil Engineering Journal,2017,50(Supp.2):260–266.(in Chinese))
|
[11] |
宋 飞. 基于支持向量机的隧道围岩变形预测[J]. 交通世界,2016,(30):56–57.(SONG Fei. Prediction of tunnel surrounding rock deformation based on support vector machine[J]. Transport World,2016,(30):56–57.(in Chinese))
|
[21] |
乔正明. 基于模糊灰色新陈代谢FGM(1,1)模型预测及应用探讨[J]. 数学的实践与认识,2017,47(5):284–288.(QIAO Zhengming. Prediction and application of FGM(1,1) model based on Fuzzy Grey metabolism[J]. Mathematics in Practice and Theory,2017,47(5):284–288.(in Chinese))
|
[31] |
杨绍清,吴晓飞,章新华,等. NAR模型的Korenberg算法及其应用[J]. 系统仿真学报,2001,13(4):439–441.(YANG Shaoqing,WU Xiaofei,ZHANG Xinhua,et al. Korenberg?s algorithm for NAR model and its applications[J]. Journal of System Simulation,2001,13(4):439–441.(in Chinese))
|
[8] |
YAO B Z,YANG C Y, YAO J B,et al. Tunnel surrounding rock displacement prediction using support vector machine[J]. International Journal of Computational Intelligence Systems,2010,3(6):843–852.
|
[9] |
YAO B,YAO J,ZHANG M,et al. Improved support vector machine regression in multi-step-ahead prediction for rock displacement surrounding a tunnel[J]. Scientia Iranica,2014,21(4):1 309–1 316.
|
[19] |
PING J. Application of grey theory and wavelet neural network in slope displacements prediction[J]. Journal of Applied Sciences,2013,13(21):4 764–4 768.
|
[29] |
许任婕. 基于时滞非线性自回归神经网络的轨道交通客流预测研究[硕士学位论文][D]. 重庆:重庆大学,2017.(XU Renjie. Research of rail traffic flow forecasting based on delay nonlinear autoregressive the neural network[M. S. Thesis][D]. Chongqing:Chongqing University,2017.(in Chinese))
|
[16] |
张志强,李化云,阚 呈,等. 大相岭隧道断层破碎带围岩变形的GA-BP神经网络预测技术[J]. 现代隧道技术,2014,51(2):83–89. (ZHANG Zhiqing,LI Huayun,KAN Cheng,et al. Prediction of surrounding rock deformation in fault fracture zone of Daxiangling tunnel by GA-BP neural network[J]. Modern Tunneling Technology,2014,51(2):83–89.(in Chinese))
|
[18] |
周冠南,孙玉永,贾 蓬. 基于遗传算法的BP神经网络在隧道围岩参数反演和变形预测中的应用[J]. 现代隧道技术,2018,55(1):107–113.(ZHOU Guannan,SUN Yuyong,JIA Peng. Application of genetic algorithm based BP neural network to parameter inversion surrounding rock and deformation prediction[J]. Modern Tunnelling Technology,2018,55(1):107–113.(in Chinese))
|
[24] |
邱志刚. 基于蚁群优化支持向量机的公路隧道围岩变形预测模型及应用[J]. 隧道建设,2014,34(1):13–18.(QIU Zhigang. Highway tunnel surrounding rock deformation prediction model based on support vector machine optimized by ant colony optimization and its application[J]. Tunnel Construction,2014,34(1):13–18.(in Chinese))
|
[26] |
王 军. 基于新陈代谢与神经网络组合模型的加工误差预测及补偿[硕士学位论文][D]. 重庆:重庆大学,2017.(WANG Jun. Prediction and compensation of machining error based on combined model of metabolic model and neural network[M. S. Thesis][D]. Chongqing:Chongqing University,2017.(in Chinese))
|
[28] |
袁鲁山. 基于NAR神经网络的车速预测及应用[硕士学位论文][D]. 大连:大连理工大学,2016.(YUAN Lushan. Vehicle speed prediction and application based on NAR neural network[M. S. Thesis][D]. Dalian:Dalian University of Technology,2016.(in Chinese))
|
[36] |
李二兵,韩 阳,谭跃虎,等. 北山坑探设施开挖全过程围岩内部位移现场量测试验研究[J]. 岩石力学与工程学报,2017,36(11): 2 741–2 754.(LI Erbing,HAN Yang,TAN Yuehu,et al. Field measuring test on internal displacement of surrounding rock during whole excavation process of Beishan exploration tunnel[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(11):2 741–2 754.(in Chinese))
|