Evolution law and field application of true triaxial fracture of deep coal rock under different injection modes
ZHAO Zhihong1, DENG Yinxin1, GUO Jianchun1, HE Jiale1, WU Tianyu1, ZHAO Feng1, ZHANG Ran2
(1. State Key Laboratory of Reservoir Geology and Development Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; 2. School of Mechanical Engineering, Xihua University, Chengdu, Sichuan 610039, China)
Abstract:The fracture propagation pattern following hydraulic fracturing in deep coal rock significantly influences the effectiveness of reservoir stimulation. Understanding the characteristics and evolution of hydraulic fractures in deep coal rock under varying injection modes is essential for the efficient development of coalbed methane. To elucidate the fracture evolution patterns in deep coal rock and explore methods for forming fracture networks, large-scale true triaxial hydraulic fracturing physical simulation experiments were conducted. These experiments integrated acoustic emission monitoring with post-fracturing 3D fracture reconstruction technology. Testing was performed on the #8 deep coal seam of the Ordos Basin, utilizing various injection parameters and modes. The findings were corroborated by on-site reservoir reconstruction results in the Ordos deep coal rock area. The results indicate that: (1) the number of fractures and the fracture area ratio in deep coal rock are strongly correlated with the viscosity of the fracturing fluid. Low-viscosity fluids yield the highest fracture count and area ratio, albeit with lower fluid efficiency. As fluid viscosity increases, the fracture count decreases by 91%, the fracture area ratio decreases by 86%, and fracture complexity diminishes. (2) At low viscosities, natural fractures (e.g., cleats and bedding planes) predominantly dictate the direction of hydraulic fractures. With increasing viscosity, the minimum resistance plane, influenced by in-situ stress and rock anisotropy, becomes the primary controlling factor. (3) During variable-rate fracturing processes, a higher injection rate results in increased fracture initiation pressure in rock specimens, reduced fracture initiation time, and heightened intensity of acoustic emission ring-down counts, thereby facilitating the formation of dominant hydraulic fractures. (4) The injection mode of “high viscosity first, low viscosity later” effectively maintains fracture complexity while minimizing fluid loss, enhancing fluid efficiency, and achieving a fluid efficiency 2.06 times that of the low-viscosity-only injection mode. The application of a variable-viscosity injection mode combined with high-rate fracturing technology in the deep coal seams of the Ordos Basin demonstrates significant effectiveness, with post-fracturing daily average production per well reaching 4.4 times that achieved through conventional fracturing techniques.
赵志红1,邓银鑫1,郭建春1,何家乐1,吴天宇1,赵 峰1,张 然2. 不同注入模式下深煤岩真三轴裂缝演化规律及现场应用[J]. 岩石力学与工程学报, 2025, 44(10): 2668-2678.
ZHAO Zhihong1, DENG Yinxin1, GUO Jianchun1, HE Jiale1, WU Tianyu1, ZHAO Feng1, ZHANG Ran2. Evolution law and field application of true triaxial fracture of deep coal rock under different injection modes. , 2025, 44(10): 2668-2678.
周淑慧,王 军,梁 严. 碳中和背景下中国“十四五”天然气行业发展[J]. 天然气工业,2021,41(2):171-182.(ZHOU Shuhui,WANG Jun,LIANG Yan. Development of China's natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality[J]. Natural Gas Industry,2021,41(2):171-182.(in Chinese))
[2]
李 孥,王建良,刘 睿,等. 碳中和目标下天然气产业发展的多情景构想[J]. 天然气工业,2021,41(2):183-192.(LI Nu,WANG Jianliang,LIU Rui,et al. Multi-scenario conception on the development of natural gas industry under the goal of carbon neutrality[J]. Natural Gas Industry,2021,41(2):183-192.(in Chinese))
[3]
徐凤银,侯 伟,熊先钺,等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,50(4):669-682.(XU Fengyin,HOU Wei,XIONG Xianyue,et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,50(4):669-682.(in Chinese))
[4]
黄中伟,李国富,杨睿月,等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报,2022,47(9):3 212-3 238.(HUANG Zhongwei,LI Guofu,YANG Ruiyue,et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society,2022,47(9):3 212-3 238.(in Chinese))
[5]
WANG D Y,WANG Z M,CAI X L. Experimental study on coal fines migration and effects on conductivity of hydraulic fracture during entire coalbed methane production period[J]. Geoenergy Science and Engineering,2023,223:211555.
[6]
CHEN Y D,LIANG W G,LIAN H J,et al. Experimental study on the effect of fracture geometric characteristics on the permeability in deformable rough-walled fractures[J]. International Journal of Rock Mechanics and Mining Sciences,2017,98:121-140.
[7]
刘 峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1-15.(LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1-15.(in Chinese))
[8]
孙晗森. 我国煤层气压裂技术发展现状与展望[J]. 中国海上油气,2021,33(4):120-128.(SUN Hansen. Development status and prospect of CBM fracturing technology in China[J]. China Offshore Oil and Gas,2021,33(4):120-128.(in Chinese))
[9]
张遂安,刘欣佳,温庆志,等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1):105-118.(ZHANG Sui?an,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105-118.(in Chinese))
[10]
文 龙,罗 冰,孙豪飞,等. 四川盆地上二叠统龙潭组深层煤岩气成藏地质特征及资源潜力[J]. 天然气工业,2024,44(10):22-32.(WEN Long,LUO Bing,SUN Haofei,et al. Geological characteristics and resources potential of deep coal-rock gas reservoir in the Upper Permian Longtan Formationof the Sichuan Basin[J]. Natural Gas Industry,2024,44(10):22-32.(in Chinese))
[11]
李全贵,邓羿泽,胡千庭,等. 煤岩水力压裂物理试验研究综述及展望[J]. 煤炭科学技术,2022,50(12):62-72.(LI Quangui,DENG Yize,HU Qianting,et al. Review and prospect of coal rock hydraulic fracturing physical experimental research[J]. Coal Science and Technology,2022,50(12):62-72.(in Chinese))
[12]
山 拓,孙长彦,王 乾,等. 基于煤储层水力压裂动态渗透率变化的压裂效果评价方法及其应用[J]. 煤田地质与勘探,2022,50(5):57-65.(SHAN Tuo,SUN Changyan,WANG Qian,et al. Evaluation method and application of fracturing effect based on dynamic permeability change of coal reservoir hydraulic fracturing[J]. Coal Geology and Exploration,2022,50(5):57-65.(in Chinese))
[13]
王生维,熊章凯,吕帅锋,等. 煤储层水力压裂裂缝中支撑剂特征及研究意义[J]. 煤田地质与勘探,2022,50(3):137-145.(WANG Shengwei,XIONG Zhangkai,LYU Shuaifeng,et al. Characteristics and significance of proppant in hydraulic fractures in coal reservoirs[J]. Coal Geology and Exploration,2022,50(3):137-145.(in Chinese))
[14]
张 群,降文萍,姜在炳,等. 我国煤矿区煤层气地面开发现状及技术研究进展[J]. 煤田地质与勘探,2023,51(11):139-158.(ZHANG Qun,JIANG Wenping,JIANG Zaibing,et al. Present situation and technical research progress of coalbed methane surface development in coal mining areas of China[J]. Coal Geology and Exploration,2023,51(11):139-158.(in Chinese))
[15]
GAO M,ZHANG C G,OH J. Assessments of the effects of various fracture surface morphology on single fracture flow:A review[J]. International Journal of Mining Science and Technology,2023,33(1):1-29.
[16]
LI Z B,REN T,LI X C,et al. Multi-scale pore fractal characteristics of differently ranked coal and its impact on gas adsorption[J]. International Journal of Mining Science and Technology,2023,33(4):389-401.
[17]
YANG R Y,WEN H T,HUANG Z W,et al. Experimental investigation on fracture characteristics by liquid nitrogen compound fracturing in coal[J]. Fuel,2023,340:127434.
[18]
LEI S,HAO D Y,CAO S W. Study on uniaxial compression deformation and fracture development characteristics of weak interlayer coal-rock combination[J]. Fractal and Fractional,2023,7(10):731.
[19]
LIU D,SHU L Y,WANG Y B,et al. Experimental studies on the crack initiation and propagation of hydraulic fracturing with different coal structure combinations[J]. ACS Omega,2023,41(8):38 072-38 082.
[20]
ZHANG P,MENG Z P,ZHANG K,et al. Impact of coal ranks and confining pressures on coal strength,permeability,and acoustic emission[J]. International Journal of Geomechanics,2020,20(8):4020135.
[21]
张红军,王 渊,杨 函. 煤层气储层复杂裂缝导流能力影响因素研究[J]. 煤矿安全,2022,53(5):21-26.(ZHANG Hongjun,WANG Yuan,YANG Han. Influencing factors of conductivity of complex fractures in coalbed methane reservoir[J]. Safety in Coal Mines,2022,53(5):21-26.(in Chinese))
[22]
谢紫霄,黄中伟,熊建华,等. 天然裂缝对干热岩水力压裂裂缝扩展的影响规律[J]. 天然气工业,2022,42(4):63-72.(XIE Zixiao,HUANG Zhongwei,XIONG Jianhua,et al. Influence of natural fractures on the propagation of hydraulic fractures in hot dry rock[J]. Natural Gas Industry,2022,42(4):63-72.(in Chinese))
[23]
ZHAO Y L,ZHANG L Y,WANG W J,et al. Cracking and stress-strain behavior of rock-like material containing two flaws under uniaxial compression[J]. Rock Mechanics and Rock Engineering,2016,49(7):2 665-2 687.
[24]
杨兆中,张 丹,易良平,等. 多层叠置煤层压裂裂缝纵向扩展模型与数值模拟[J]. 煤炭学报,2021,46(10):3 268-3 277.(YANG Zhaozhong,ZHANG Dan,YI Liangping,et al. Longitudinal propagation model of hydraulic fracture and numerical simulation in multi-layer superimposed coalbed[J]. Journal of China Coal Society,2021,46(10):3 268-3 277.(in Chinese))
[25]
WU Y,WANG D K,WEI J P,et al. Damage constitutive model of gas-bearing coal using industrial CT scanning technology[J]. Journal of Natural Gas Science and Engineering,2022,101:104543.
[26]
孟召平,卢易新. 高煤阶煤样水力压裂前后应力-渗透率试验研究[J]. 煤炭科学技术,2023,51(1):353-360.(MENG Zhaoping,LU Yixin. Experimental study on stress-permeability of high rank coal samples before and after hydraulic fracturing[J]. Coal Science and Technology,2023,51(1):353-360.(in Chinese))
[27]
吴拥政,杨建威. 煤矿砂岩横向切槽真三轴定向水力压裂试验[J]. 煤炭学报,2020,45(3):927-935.(WU Yongzheng,YANG Jianwei. True tri-axial directional hydraulic fracturing test on sandstone with transverse grooves in coal mine[J]. Journal of China Coal Society,2020,45(3):927-935.(in Chinese))
[28]
吕帅锋,王生维,刘洪太,等. 煤储层天然裂隙系统对水力压裂裂缝扩展形态的影响分析[J]. 煤炭学报,2020,45(7):2 590-2 601. (LÜ Shuaifeng,WANG Shengwei,LIU Hongtai,et al. Analysis of the influence of natural fracture system on hydraulic fracture propagation morphology in coal reservoir[J]. Journal of China Coal Society,2020,45(7):2 590-2 601.(in Chinese))
[29]
李浩哲,姜在炳,范宗洋,等. 跨煤岩界面穿层压裂裂缝动态扩展特征试验研究[J]. 岩土力学,2024,45(3):737-749.(LI Haozhe,JIANG Zaibing,FAN Zongyang,et al. Experimental study on dynamic propagation characteristics of fracturing crack across coal-rock interface[J]. Rock and Soil Mechanics,2024,45(3):737-749.(in Chinese))
[30]
梁天成,刘云志,付海峰,等. 多级循环泵注水力压裂模拟实验研究[J]. 岩土力学,2018,39(增1):355-361.(LIANG Tiancheng,LIU Yunzhi,FU Haifeng,et al. Experimental study of hydraulic fracturing simulation for multistage circulating pump injection[J]. Rock and Soil Mechanics,2018,39(Supp.1):355-361.(in Chinese))