Thermal fracture characteristics of granite irradiated by continuous and millisecond-pulsed laser
LI Zikun1, ZHANG Xuemin1, CHEN Jing1, ZHOU Xianshun2, OU Xuefeng3, WU Chaoguang1, YAN Junzhu4
(1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. School of Civil Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; 3. School of Civil Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China; 4. Hunan Dake Laser Co., Ltd., Changsha, Hunan 410006, China)
Abstract:Laser rock-breaking technology presents promising applications for non-blasting excavation of extremely hard rock. To clarify the thermal fragmentation characteristics of continuous-wave (CW) and millisecond-pulsed laser on granite and compare their applicability in rock drilling, we conducted laser ablation experiments on granite. The physicochemical failure processes of granite were analyzed comparatively. We investigated the temperature rise and cooling characteristics of the granite surface using infrared thermography. An instantaneous heat transfer model for the rock surface under laser irradiation was established, incorporating the nonlinear temperature dependence of thermophysical parameters. Through CT scanning and three-dimensional reconstruction, we comparatively analyzed the morphology, structure, and distribution of internal three-dimensional cracks in granite. The results indicate that: (1) the phase transition damage zone in granite consists of a borehole and a molten layer, with approximate ratios of 4:6 under CW irradiation and 7:3 under millisecond-pulsed laser irradiation. The primary phase destruction mechanisms induced by the two laser types are melting and thermal cracking, respectively. (2) The surface temperature evolution over irradiation time can be divided into three stages: rapid rise, fluctuation decline, and sustained decline. Reducing the duty cycle or increasing the repetition frequency enhances the temperature difference during the fluctuation decline stage, resulting in greater thermal stress and intensified thermal cracking reactions. (3) Calculations based on the instantaneous heat transfer model indicate that for CW laser parameters (P = 3 000 W, t = 0.04 s), accounting for the nonlinear temperature dependence of thermophysical parameters yields a calculated surface temperature of 1 296.8 ℃, with a 6.99% error compared to the measured value. (4) The instantaneous temperature rise curve under millisecond-pulsed laser irradiation exhibits distinct “pulse heating-intermittent cooling” phenomena, with the initial heating rate under high-duty-cycle conditions significantly exceeding that of low-duty-cycle conditions. (5) As the laser ablation depth increases, the scale of shear cracks outside the phase transition zone enlarges. The damage capability of the CW laser outside the phase transition zone diminishes with increasing specimen depth, whereas that of the millisecond-pulsed laser strengthens with greater depth.
王少锋,孙立成,周子龙,等. 非爆破岩理论和技术发展与展望[J].中国有色金属学报,2022,32(12):3 883-3 912.(WANG Shaofeng,SUN Licheng,ZHOU Zilong,et al. Development and prospect of non-blasting rock theory and technology[J]. The Chinese Journal of Nonferrous Metals,2022,32(12):3 883-3 912.(in Chinese))
[2]
杨 俐,宋向荣,杨 林,等. 隧道爆破炮孔激光投射装置研发与应用[J]. 施工技术(中英文),2024,53(12):102-106.(YANG Li,SONG Xiangrong,YANG Lin,et al. Development and application of laser projection device for tunnel blasting hole[J]. Construction Technology,2024,53(12):102-106.(in Chinese))
[3]
官 兵,李士斌,张立刚,等. 激光破岩技术影响因素的研究进展[J]. 激光与光电子学进展,2020,57(3):31-43.(GUAN Bing,LI Shibin,ZHANG Ligang,et al. Review on influencing factors of laser rock drilling technology[J]. Laser and Optoelectronics Progress,2020,57(3):31-43.(in Chinese))
[4]
LI Y L,LI J M,PENG J M,et al. Effect of artificially induced microcracks near the rock surface on granite fragmentation performance under heating treatment[J]. International Journal of Rock Mechanics and Mining Sciences,2024,182:105894.
[5]
ZHOU X M,HAO H C,LIU J J,et al. Mechanism of increasing or inhibiting laser-weakened rocks by saturated fluids and mechanical behavior of rocks after laser damage[J]. Engineering Fracture Mechanics,2023,293:109723.
[6]
杨 磊,杨本高,刘军军,等. 激光热裂砂岩可钻性及力学参数特征研究[J]. 煤田地质与勘探,2023,51(8):171-180.(YANG Lei,YANG Bengao,LIU Junjun,et al. Study on drillability and mechanical parameters of laser hot-cracked sandstone[J]. Coal Geology and Exploration,2023,51(8):171-180.(in Chinese))
[7]
姜昌浪,康民强,刘记立,等. 面向钻井提速的激光破岩机制研究进展[J]. 激光与光电子学进展,2023,60(17):89-101.(JIANG Changlang,KANG Minqiang,LIU Jili,et al. Research progress of laser rock breaking mechanism for drilling acceleration[J]. Advances in Laser and Optoelectronics,2023,60(17):89-101.(in Chinese))
[8]
李梓焜,张学民,武朝光,等. 高功率激光水平辐照花岗岩致裂成孔特性及成孔能效评价[J]. 中南大学学报:自然科学版,2024,55(4):1 433-1 446.(LI Zikun,ZHANG Xuemin,WU Chaoguang,et al. Evaluation of pore formation characteristics and energy efficiency of granite induced by horizontal irradiation of high power laser[J]. Journal of Central South University:Natural Science Edition,2024,55(4):1 433-1 446.(in Chinese))
[9]
郑亚魁,旷鸣海,张 魁,等. 激光破岩技术研究进展[J]. 隧道建设(中英文),2023,43(8):1 282-1 298.(ZHENG Yakui,KUANG Minghai,ZHANG Kui,et al. Research progress of laser-assisted rock breaking technology[J]. Tunnel Construction,2023,43(8):1 282-1 298.(in Chinese))
[10]
黄 鹏. 高功率密度激光对煤系岩样作用机制研究[硕士学位论文][D]. 徐州:中国矿业大学,2023.(HUANG Peng. Mechanism of high power density laser radiation on coal measure rock samples[M. S. Thesis][D]. Xuzhou:China University of Mining and Technology,2023.(in Chinese))
[11]
刘 拓,王智信,崔子昂,等. 花岗岩表面激光破岩预钻孔工艺影响研究[J]. 应用激光,2017,37(4):580-585.(LIU Tuo,WANG Zhixin,CUI Ziang,et al. Research on the process influence of laser pre-drilling on granite surface[J]. Applied Laser,2017,37(4):580-585.(in Chinese))
[12]
张建阔. 激光破岩试验及激光技术在石油工程中的应用[J]. 石油机械,2017,45(3):16-20.(ZHANG Jiankuo. Experimental study on laser rock breaking and discussion on its application in petroleum engineering[J]. Petroleum Machinery,2017,45(3):16-20.(in Chinese))
[13]
张云博,陆宝乐,蒋 涛,等. 激光破岩特性研究[J]. 激光杂志,2013,34(5):55-56.(ZHANG Yunbo,LU Baole,JIANG Tao,et al. The research about the laser rock -crushed characteristics[J]. Laser Journal,2013,34(5):55-56.(in Chinese))
[14]
杨 赟,谭 平,韦孝忠,等. 激光钻井技术现状与关键技术[J]. 钻采工艺,2015,38(1):35-39.(YANG Yun,TAN Ping,WEI Xiaozhong,et al. Development status and key technologies of laser drilling[J]. Drilling and Production Technology,2015,38(1):35-39.(in Chinese))
[15]
闫 静,王德贵,左永强,等. 激光钻井技术进展及其关键技术[J]. 机械工程师,2021,(1):88-90.(YAN Jing,WANG Degui,ZUO Yongqiang,et al. Development status and key technologies of laser drilling technology[J]. Mechanical Engineer,2021,(1):88-90.(in Chinese))
[16]
李可心. 激光破岩机制及影响因素的分析[硕士学位论文][D]. 大庆:东北石油大学,2017.(LI Kexin. Analysis of laser rock breaking mechanism and influencing factors[M. S. Thesis][D]. Daqing:Northeast Petroleum University,2017.(in Chinese))
[17]
YAN F,GU Y F,WANG Y J,et al. Study on the interaction mechanism between laser and rock during perforation[J]. Optics and Laser Technology,2013,54:303-308.
[18]
王义江,郁东旭,孙立鹏,等. 激光照射岩石热裂特性与裂隙分布研究[J]. 岩土工程学报,2024,46(9):1 809-1 819.(WANG Yijiang,YU Dongxu,SUN Lipeng,et al. Thermal-breaking characteristics and crack distribution of rock irradiated by laser beams[J]. Chinese Journal of Geotechnical Engineering,2024,46(9):1 809-1 819.(in Chinese))
[19]
杨 阳,孙晓娜,程春杰,等. 油井激光射孔可行性实验研究及防砂机制分析[J]. 科学技术与工程,2012,12(33):8 855-8 858. (YANG Yang,SUN Xiaona,CHENG Chunjie,et al. The experimental study of feasibility for well laser perforation and the analysis of mechanism for sand control[J]. Science Technology and Engineering,2012,12(33):8 855-8 858.(in Chinese))
[20]
ADENIJI A W. The applications of laser technology in downhole operations-a review[C]// Proceedings of International Petroleum Technology Conference. Doha,Qatar:[s.n.],2014,DOI:10.2523/17357-MS.
[21]
易先中,高德利,明 燕,等. 激光破岩的物理模型与传热学特性研究[J]. 天然气工业,2005,(8):62-65.(YI Xianzhong,GAO Deli,MING Yan,et al. Physical model of removing rock by laser and its heat transfer characteristics[J]. Natural Gas Industry,2005,(8):62-65.(in Chinese))
[22]
易先中,祁海鹰,易先彬,等. 激光破岩温度场的数学模型[J]. 石油天然气学报,2005,(增6):885-887.(YI Xianzhong,QI Haiying,YI Xianbin,et al. Mathematical model of laser rock breaking temperature field[J]. Journal of Oil and Gas Technology,2005,(Supp.6):885-887.(in Chinese))
[23]
齐士杰,熊 林,陈明远,等. 激光粉末床熔融TC4钛合金熔道形貌及气孔形成机制研究[J]. 中国激光,2023,50(12):236-244.(QI Shijie,XIONG Lin,CHEN Mingyuan,et al. TC4 titanium alloy track morphology and pore formation mechanism in laser powder bed fusion process[J]. Chinese Journal of Lasers,2023,50(12):236-244.(in Chinese))
[24]
时睦涵. 温度-应力作用下花岗岩力学特性及破坏特征研究[硕士学位论文][D]. 包头:内蒙古科技大学,2022.(SHI Muhan. Study on mechanical properties and failure characteristics of granite under temperature-stress[M. S. Thesis][D]. Baotou:Inner Mongolia University of Science and Technology,2022.(in Chinese))
[25]
张丽静,尚新春. 由激光辐照固体表面引起的非Fourier三维传热问题的解析解[J]. 北京理工大学学报,2016,36(8):876-880. (ZHANG Lijing,SHANG Xinchun. Non-fourier effect in three-dimensional heating conduction by laser irradiation on surface[J]. Journal of Beijing Institute of Technology,2016,36(8):876-880.(in Chinese))
[26]
尹培琪,许博坪,刘颖华,等. 高斯与平顶光束纳秒脉冲激光物质蒸发烧蚀动力学仿真研究[J]. 物理学报,2024,73(9):192-204.(YIN Peiqi,XU Boping,LIU Yinghua,et al. Simulation of evaporation ablation dynamics of materials by nanosecond pulse laser of Gaussian beam and flat-top beam[J]. Acta Physica Sinica,2018,73(9):192-204.(in Chinese))
[27]
徐国强. 移动激光辅助TBM盘形滚刀破岩机制研究[硕士学位论文][D]. 湘潭:湘潭大学,2022.(XU Guoqiang. Study on the mechanism of mobile laser-assisted TBM disc-cutter rock breaking[M. S. Thesis][D]. Xiangtan:Xiangtan University,2022.(in Chinese))