Damage evolution mechanism and mechanical behavior of tight sandstone in the second member of Xujiahe Formation in Southern Sichuan after high temperature
SU Tengyue1, 2, LI Gao1, 2, SHANGGUAN Ziran1, 2, ZHANG Yi3, YANG Xu1, 2, LI Hongtao1, 2, WANG Xinyang1
(1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China; 2. Underbalanced/Gas Drilling Laboratory, National Engineering Research Center of Oil and Gas Drilling and Completion Technology, Chengdu, Sichuan 610500, China; 3. Engineering Technology Research Institute of PetroChina
Southwest Oil and Gas Field Company, Chengdu, Sichuan 610017, China)
Abstract:To investigate the influence mechanism of high temperature on thermal damage and fracture of surrounding rock, tight sandstone samples from the second member of the Xujiahe Formation in southern Sichuan were selected. Uniaxial compression, Brazilian splitting, and thermogravimetric analysis experiments were conducted on the rock samples after heat treatment at temperatures ranging from 100 ℃ to 1 000 ℃. By integrating a micromechanical model based on thin section analysis and nanoindentation, we obtained insights into the deformation behavior, strength characteristics, failure modes, and micro-damage mechanisms of the heat-treated tight sandstone. The results indicate that: (1) the thermal weight loss of the rock samples exhibits three distinct stages: water loss (100 ℃–800 ℃), mineral structure transformation (around 400 ℃), and destruction (800 ℃– 1 000 ℃). Thermally induced microcracks within the grains begin to develop at 500 ℃ and become pronounced between 500 and 800 ℃, displaying characteristics of intergranular tension, accompanied by minor intragranular tension and intergranular shear. At temperatures between 800 ℃and 1 000 ℃, the number of intragranular microcracks increases rapidly, revealing a dominance of intragranular tension, secondary intergranular tension, and sporadic intergranular shear. (2) In uniaxial compression and Brazilian splitting tests on heat-treated rock samples, the deformation mechanism transitions from brittle to plastic as temperature rises; uniaxial compressive strength, tensile strength, and elastic modulus initially increase before decreasing. Between 300 ℃and 400 ℃, these parameters fluctuate locally due to the mesoscopic damage evolution of the rock samples, while the gradual increase in Poisson′s ratio confirms the synergistic effects of stiffness weakening and plastic strengthening. (3) The failure mode of the rock sample under Brazilian splitting is predominantly tensile, with pronounced central cracking characteristics as thermal damage intensifies. Under uniaxial compression, the failure mode of the rock sample changes with temperature in the following sequence: single cylindrical splitting→single inclined plane shear→V-shaped conjugate shear→multi-crack splitting exhibiting crushing features.
宿腾跃1,2,李 皋1,2,上官自然1,2,张 毅3,杨 旭1,2,李红涛1,2,王鑫阳1. 川南须二段致密砂岩高温后损伤演化机制与力学行为研究[J]. 岩石力学与工程学报, 2025, 44(11): 3071-3085.
SU Tengyue1, 2, LI Gao1, 2, SHANGGUAN Ziran1, 2, ZHANG Yi3, YANG Xu1, 2, LI Hongtao1, 2, WANG Xinyang1. Damage evolution mechanism and mechanical behavior of tight sandstone in the second member of Xujiahe Formation in Southern Sichuan after high temperature. , 2025, 44(11): 3071-3085.
[1] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机制及展望——以中国致密油和致密气为例[J]. 石油学报,2012,33(2):173–187.(ZOU Caineng,ZHU Ruikai,WU Songtao,et al. Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations:taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica,2012,33(2):173–187.(in Chinese))
[2] 李 皋,孟英峰,唐洪明,等. 低渗透致密砂岩水锁损害机制及评价技术[M]. 成都:四川科学技术出版社,2012:2–6.(LI Gao,MENG Yingfeng,TANG Hongming,et al. Water locking damage mechanism and evaluation technology of low permeability tight sandstone[M]. Chengdu:Sichuan Science and Technology Press,2012:2–6.(in Chinese))
[3] 杨 旭,孟英峰,李 皋,等. 考虑水锁损害的致密砂岩气藏产能分析[J]. 天然气地球科学,2017,28(5):812–818.(YANG Xu,MENG Yingfeng,LI Gao,et al. Productivity analysis of tight sandstone gas reservoirs considering water blocking damage[J]. Natural Gas Geoscience,2017,28(5):812–818.(in Chinese))
[4] LI G,MENG Y F,DONG Z X,et al. Mechanisms and significance of microfractures generated by microwave heating in sandstone reservoirs[J]. Petroleum Exploration and Development,2007,34(1):93–97.
[5] PING S,L Y N,ZHEN Y,et al. Simulation of hydrogen generation via in-situ combustion gasification of heavy oil[J]. International Journal of Hydrogen Energy,2024,49(PD):925–936.
[6] 何满潮,钱七虎. 深部岩体力学基础[M]. 北京:科学出版社, 2010:126–134.(HE Manchao,QIAN Qihu. The basis of deep rock mechanics[M]. Beijing:Science Press,2010:126–134.(in Chinese))
[7] 朱合华,闫治国,邓 涛,等. 3种岩石高温后力学性质的试验研究[J]. 岩石力学与工程学报,2006,25(10):1 945–1 950.(ZHU Hehua,YAN Zhiguo,DENG Tao,et al. Testing study on mechanical properties of tuff,granite and brecciaafter high temperatures[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(10):1 945–1 950.(in Chinese))
[8] 何 童,徐泽辉,杜光钢,等. 高温水冷玄武岩微观机制及物理力学特性分析[J]. 地下空间与工程学报,2023,19(2):380–390.(HE Tong,XU Zehui,DU Guanggang,et al. Analysis of microscopic mechanism and physico-mechanical properties of high temperature-water cooled basalt[J]. Chinese Journal of Underground Space and Engineering,2023,19(2):380–390.(in Chinese))
[9] PENG J,RONG G,TANG Z,et al. Microscopic characterization of microcrack development in marble after cyclic treatment with high temperature[J]. Bulletin of Engineering Geology and the Environment,2019,78(8):5 965–5 976.
[10] 朱鹏熹,王成龙,蒋思维,等. 温度影响下石窟砂岩力学特性试验研究[J]. 岩石力学与工程学报,2024,43(增1):3 310–3 320.(ZHU Pengxi,WANG Chenglong,JIANG Siwei,et al. Experimental study on mechanical properties of grottoes sandstone influenced by temperature[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(Supp.1):3 310–3 320.(in Chinese))
[11] 郭 沛,吴顺川,方旭刚,等. 高温–水冷作用下花岗岩巴西劈裂试验及启裂模式研究[J]. 矿业研究与开发,2023,43(6):108–114. (GUO Pei,WU Shunchuan,FANG Xugang,et al. Study on brazilian splitting test and crack initiation mode of granite under high temperature water cooling treatment[J]. Mining Research and Development,2023,43(6):108–114.(in Chinese))
[12] 郤保平,吴阳春,王 帅,等. 青海共和盆地花岗岩高温热损伤力学特性试验研究[J]. 岩石力学与工程学报,2020,39(1):69–83.(XI Baoping,WU Yangchun,WANG Shuai,et al. Experimental study on mechanical properties of granite taken from Gonghe basin, Qinghai province after high temperature thermal damage[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(1):69–83.(in Chinese))
[13] 张连英. 高温作用下泥岩的损伤演化及破裂机制研究[博士学位论文][D]. 徐州:中国矿业大学,2012.(ZHANG Lianying. Research on damage evoultion and fracture mechanisms of mudstone under high temperature[Ph. D. Thesis][D]. Xuzhou:China University of Mining and Technology,2012.(in Chinese))
[14] 赵 奎,李从明,曾 鹏,等. 持续高温作用下花岗岩特征应力及声发射特征试验研究[J]. 岩石力学与工程学报,2024,43(7): 1 580–1 592.(ZHAO Kui,LI Congming,ZENG Peng,et al. Experimental study on characteristic stress and acoustic emission characteristics of granite under continued high temperature[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(7):1 580–1 592.(in Chinese))
[15] 赵阳升,万志军,张 渊,等. 岩石热破裂与渗透性相关规律的试验研究[J]. 岩石力学与工程学报,2010,29(10):1 970–1 976. (ZHAO Yangsheng,WAN Zhijun,ZHANG Yuan,et al. Experimental study of related laws of rock thermal cracking and permeability[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(10):1 970–1 976.(in Chinese))
[16] 田文岭,杨圣奇,黄彦华,等. 花岗岩高温高压损伤破裂细观机制模拟研究[J]. 岩石力学与工程学报,2022,41(9):1 810–1 819. (TIAN Wenling,YANG Shengqi,HUANG Yanhua,et al. Meso-fracture mechanism of granite specimens under high temperature and confining pressure by numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(9):1 810–1 819.(in Chinese))
[17] 左建平,周宏伟,胡 本. 基于单元质心对应法花岗岩热开裂及变形模拟研究[J]. 中国矿业大学学报,2012,41(6):878–884.(ZUO Jianping,ZHOU Hongwei,HU Ben. Meso-structure based numerical simulations of deformation and failure of granite:Thermal-mechanical coupling[J]. Journal of China University of Mining and Technology,2012,41(6):878–884.(in Chinese))
[18] 王 伟,任韬哲,候 超,等. 单轴压缩下冻融灰岩力学特性及裂纹扩展机制研究[J]. 金属矿山,2024,(10):61–68.(WANG Wei,REN Taozhe,HOU Chao,et al. Study on mechanical properties and crack propagation mechanism of freeze-thaw limestone under uniaxial compression[J]. Metal Mine,2024,(10):61–68.(in Chinese))
[19] 张 毅,李 皋,王希勇,等. 川西须家河组致密砂岩高温后微组构特征及对力学性能的影响[J]. 岩石力学与工程学报,2021,40(11):2 249–2 259.(ZHANG Yi,LI Gao,WANG Xiyong,et al. Microstructural characteristics of tight sandstone in the Xujiahe Formation of western Sichuan after high temperature and their impact on mechanical properties[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2 249–2 259.(in Chinese))
[20] 吴顺川,郭 沛,张诗淮,等. 基于巴西劈裂试验的花岗岩热损伤研究[J]. 岩石力学与工程学报,2018,37(增2):3 805–3 816.(WU Shunchuan,GUO Pei,ZHANG Siwei,et al. Study on thermal damage of granite based on Brazilian splitting test[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(Supp.2):3 805–3 816.(in Chinese))
[21] 马阳升. 实时高温作用下岩石力学特性实验研究[硕士学位论文][D]. 徐州:中国矿业大学,2018.(MA Yangsheng. Experimental study on rock mechanical properties under real-time high-temperature action[M. S. Thesis][D]. Xuzhou:China University of Mining and Technology,2018.(in Chinese))
[22] 宋迪思,盛 浩,周 清,等. 不同母质发育土壤的中红外吸收光谱特征[J]. 土壤通报,2016,47(1):1–7.(SONG Disi,SEHNG Hao,ZHOU Qing,et al. Characteristics of middle-infrared absorption spectrum of soils derived from different parent materials[J]. Chinese Journal of Soil Science,2016,47(1):1–7.(in Chinese))
[23] LI X,HUANG S,Yin T B,et al. Dynamic properties of thermal shock treated sandstone subjected to coupled dynamic and static loads[J]. Minerals,2021,11(8):889–889.
[24] YANG X,ZHANG Y,LI G,et al. Mesoscopic modeling approach and application based on rock thin slices and nanoindentation[J]. Computers and Geotechnics,2024,165:1–17.
[25] 胡训健,卞 康,谢正勇,等. 细观结构的非均质性对花岗岩强度及变形影响的颗粒流模拟[J]. 岩土工程学报,2020,42(8):1 540–1 548.(HU Xunjian,BIAN Kang,XIE Zhengyong,et al. Influence of meso-structure heterogeneity on granite strength and deformation with particle flow code[J]. Chinese Journal of Geotechnical Engineering,2020,42(8):1 540–1 548.(in Chinese))
[26] MA Z Y,ZHANG C P,PATHEGAMA G R, et al. Uncovering the creep deformation mechanism of rock-forming minerals using nanoindentation[J]. International Journal of Mining Science and Technology,2022,32(2):283–294.
[27] GANNEAU F,CONSTANTINIDES G,ULM F. Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials[J]. International Journal of Solids and Structures,2005,43(6):1 727–1 745.
[28] CHONG Z,KAREKAL S,LI X,et al. Numerical investigation of hydraulic fracturing in transversely isotropic shale reservoirs based on the discrete element method[J]. Journal of Natural Gas Science and Engineering,2017,46:398–420.
[29] MOJTABA B,MOHAMMAD A S,HAMID M. Flat-joint model to reproduce the mechanical behaviour of intact rocks[J]. European Journal of Environmental and Civil Engineering,2019,25(8):1–22.
[30] WANG F,KONIETZKY H,HERBST M. Influence of heterogeneity on thermo-mechanical behaviour of rocks[J]. Computers and Geotechnics,2019,116:103184.
[31] AHRENS T J. Rock physics and phase relations:a handbook of physical constants[J]. Choice Reviews Online,1996,33(6):33–3332b.
[32] OETTING F L,HOLLEY C E. The specific heat capacity of biotite[J]. The Journal of Chemical Thermodynamics,1982,14(11):1 029– 1 034.
[33] 靳佩桦. 高温裂隙花岗岩渗流-传热中裂隙围岩演变特征研究[博士学位论文][D]. 太原:太原理工大学,2019.(JIN Peihua. Study on evolution of fracture and surrounding rock during seepage-heat transfer process of high-temperature fractured granite[Ph. D. Thesis][D]. Taiyuan:Taiyuan University of Technology,2019.(in Chinese))
[34] 李明昊,李 皋,张 毅,等. 位移约束和温度耦合下致密砂岩热诱导微裂纹发育规律研究[J]. 岩石力学与工程学报,2025,44(1):174–184.(LI Minghao,LI Gao,ZHANG Yi,et al. Research on the development law of thermal-induced microcracks in tight sandstone under displacement constraint and temperature coupling[J]. Chinese Journal of Rock Mechanics and Engineering,2025,44(1):174–184. (in Chinese))
[35] ZHANG Y,SHI C,ZHANG L,et al. Shear mechanical properties of aggregate cemented materials:A numerical study based on a particle flow modeling strategy[J]. Computational Particle Mechanics,2024,11(4):1 755–1 768.
[36] WANG F,KONIETZKY H. Thermal cracking in granite during a heating-cooling cycle up to 1 000 ℃:laboratory testing and real-time simulation[J]. Rock Mechanics and Rock Engineering,2022,55(3):1 411–1 428.
[37] 孙 强,张志镇,薛 雷,等. 岩石高温相变与物理力学性质变化[J]. 岩石力学与工程学报,2013,32(5):935–942.(SUN Qiang,ZHANG Zhizhen,XUE Lei,et al. Physico-mechanical properties variation of rock with phase transformation under high temperature[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(5):935–942. (in Chinese))
[38] 李存宝,谢和平,谢凌志. 页岩起裂应力和裂纹损伤应力的试验及理论[J]. 煤炭学报,2017,42(4):969–976.(LI Cunbao,XIE Heping,XIE Lingzhi,et al. Experimental and theoretical study on the shale crack initiation stress and crack damage stress[J]. Journal of China Coal Society,2017,42(4):969–976.(in Chinese))
[39] 东 振,任 博,陈艳鹏,等. 中深层煤炭地下气化的气化腔安全宽度计算方法[J]. 煤炭科学技术,2024,52(2):183–193.(DONG Zhen,REN Bo,CHEN Yanpeng,et al. Calculation method of safe width of gasification cavity for medium-deep underground coal gasification[J]. Coal Science and Technology,2024,52(2):183–193.(in Chinese))
[40] 王月华,冒刘燕. 热处理对花岗闪长岩静动态抗拉强度的影响[J]. 工程爆破,2023,29(3):31–38.(WANG Yuehua,MAO Liuyan. Effect of heat treatment on static and dynamic tensile strength of grano-diorite[J]. Engineering Blasting,2023,29(3):31–38.(in Chinese))
[41] LIU D K,CHEN H N,SU R K L. Effects of heat-treatment on physical and mechanical properties of limestone[J]. Construction and Building Materials,2024,411:134183.
[42] 祝 慧. 高温作用后砂岩力学行为与损伤演化特性研究[硕士学位论文][D]. 徐州:中国矿业大学,2023.(ZHU Hui. Study on mechanical behavior and damage evolution characteristics of sandstone after high temperature[M. S. Thesis][D]. Xuzhou:China University of Mining and Technology,2023.(in Chinese))
[43] 郭 沛. 热处理花岗岩物理力学及损伤特性研究[博士学位论文][D]. 北京:北京科技大学,2023.(GUO Pei. Study on physical and mechanical properties and damage characteristics of heat-treated granite[Ph. D. Thesis][D]. Beijing:University of Science and Technology Beijing,2023.(in Chinese))
[44] MAHANTA B,RANJITH P G,VISHAL V,et al. Temperature induced deformational responses and microstructural alteration of sandstone[J]. Journal of Petroleum Science and Engineering,2020,192:107239.
[45] KUMARI W G P,RANJITH P G,PERERA M S A,et al. Mechanical behaviour of Australian Strath bogie granite under in-situ stress and temperature conditions:An application to geothermal energy extraction[J]. Geothermics,2017,(65):44–59.
[46] 侯云瀚. 高温作用花岗岩巴西劈裂及断裂韧度试验研究[硕士学位论文][D]. 重庆:重庆交通大学,2024.(HOU Yunhan. Experimental study on Brazilian splitting test and fracture toughness test under high temperature[M. S. Thesis][D]. Chongqing:Chongqing Jiaotong University,2024.(in Chinese))
[47] 赵亚永,魏 凯,周佳庆,等. 三类岩石热损伤力学特性的试验研 究与细观力学分析[J]. 岩石力学与工程学报,2017,36(1):142–151.(ZHAO Yayong,WEI Kai,ZHOU Jiaqing,et al. Laboratory study and micromechanical analysis of mechanical behaviors of three thermally damaged rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(1):142–151.(in Chinese))
[48] ZHANG Y,LI G,LI H T,et al. Effects of thermal damage on natural gas transport capacity of tight sandstone after electrical heating[J]. Geoenergy Science and Engineering,2023,230:212157.