Discussion and prospects on induced seismicity from shale gas extraction: A case study of the Sichuan Basin
HUANG Bingxiang1, XING Yuekun1, LI Binghong1, LI Xiaofan2, ZHAO Xinglong1, MENG Lingyuan2
(1. State Key Laboratory for Fine Exploration and intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; 2. China Earthquake Networks Center, Beijing 100045, China)
Abstract:Shale gas is an important unconventional natural gas resource in China. The Sichuan Basin serves as a major production area and is prone to frequent earthquakes, underscoring the urgent need for seismic suppression. This study aims to enhance seismic prevention and control in key production zones by first analyzing the relationship between shale gas development and seismicity. It then reviews the mechanisms of shale-gas-induced earthquakes, summarizes risk assessment and mitigation measures, and outlines future research directions. Statistical data indicate that large-scale shale gas development in the Sichuan Basin coincides with high-frequency, low-magnitude, shallow-depth seismicity, creating a seismic hotspot in southern Sichuan. Initially, seismic frequency increased before declining, while the average magnitude remained around<4.2. During the early stages of development, numerous low-energy microseismic events released tectonic stress and elastic strain energy. Concurrently, soft rocks surrounding hydraulic fractures attenuated seismic waves, thereby reducing the likelihood of larger earthquakes. We also investigate potential links between staged horizontal-well fracturing and seismicity. Shale gas extraction influences stress and energy transfer within the reservoir, which can reactivate weak-plane faults and trigger earthquakes. The weak-fault-slip mechanism is described using a failure criterion that incorporates dynamic pore pressure evolution, stress perturbation, and fault strength weakening. The dense and active fault network of the Sichuan Basin renders induced seismic risk unavoidable. Its induction mechanisms are more complex than the “injection-driven” or “fracturing-driven” models observed in North America. Consequently, North American seismic control theories have limited applicability in this context. We propose the concept of “earthquakes without disasters” as the goal for safe shale gas extraction. Coordinated multi-well operations and superimposed multi-fracture perturbations for seismic suppression provide key pathways for optimizing safe and efficient development.
黄炳香1,邢岳堃1,李炳宏1,李晓帆2,赵兴龙1,孟令媛2. 页岩气开采诱发地震问题探讨与展望:以四川盆地为例[J]. 岩石力学与工程学报, 2025, 44(11): 2843-2869.
HUANG Bingxiang1, XING Yuekun1, LI Binghong1, LI Xiaofan2, ZHAO Xinglong1, MENG Lingyuan2. Discussion and prospects on induced seismicity from shale gas extraction: A case study of the Sichuan Basin. , 2025, 44(11): 2843-2869.
[1] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发,2016,43(2):166–178.(ZOU Caineng,DONG Dazhong,WANG Yuman,et al. Shale gas in China:characteristics,challenges and prospects(Ⅱ)[J]. Petroleum Exploration and Development,2016,43(2):166–178.(in Chinese))
[2] 邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报,2020,41(1):1–12.(ZOU Caineng,PAN Songqi,JING Zhenhua,et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica,2020,41(1):1–12.(in Chinese))
[3] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发,2015,42(6):689–701.(ZOU Caineng,DONG Dazhong,WANG Yuman,et al. Shale gas in China:characteristics,challenges and prospects(Ⅰ)[J]. Petroleum Exploration and Development,2015,42(6):689–701.(in Chinese))
[4] 邹才能,赵 群,王红岩,等. 非常规油气勘探开发理论技术助力我国油气增储上产[J]. 石油科技论坛,2021,40(3):72–79.(ZOU Caineng,ZHAO Qun,WANG Hongyan,et al. Theory and technology of unconventional oil and gas exploration and development helps China increase oil and gas reserves and production[J]. Petroleum Science and Technology Forum,2021,40(3):72–79.(in Chinese))
[5] 马新华,张晓伟,熊 伟,等. 中国页岩气发展前景及挑战[J]. 石油科学通报,2023,8(4):491–501.(MA Xinhua,ZHANG Xiaowei,XIONG Wei,et al. Prospects and challenges of shale gas development in China[J]. Petroleum Science Bulletin,2023,8(4):491–501.(in Chinese))
[6] 王立歆,李 弘,刘小民,等. 中国海相页岩气地震勘探技术及其发展方向[J]. 石油学报,2024,45(1):261–275.(WANG Lixin,LI Hong,LIU Xiaomin,et al. Seismic exploration technologies of marine shale gas and their development directions in China[J]. Acta Petrolei Sinica,2024,45(1):261–275.(in Chinese))
[7] 赵金洲,任 岚,蒋廷学,等. 中国页岩气压裂十年:回顾与展望[J]. 天然气工业,2021,41(8):121–142.(ZHAO Jinzhou,REN Lan,JIANG Tingxue,et al. Ten years of gas shale fracturing in China:Review and prospect[J]. Natural Gas Industry,2021,41(8):121–142.(in Chinese))
[8] U.S. Energy Information Administration. Technically recoverable shale oil and shale gas resources[R]. Washington,D.C:U.S. Department of Energy,2013.
[9] 包书景,葛明娜,赵培荣,等. 中国页岩气勘探开发现状、潜力与发展建议[J]. 石油与天然气地质,2025,46(2):348–364.(BAO Shujing,GE Mingna,ZHAO Peirong,et al. Status-quo,potential,and recommendations on shale gas exploration and exploitation in China[J]. Oil and Gas Geology,2025,46(2):348–364.(in Chinese))
[10] 聂海宽,党 伟,张 珂,等. 中国页岩气研究与发展20年:回顾与展望[J]. 天然气工业,2024,44(3):20–52.(NIE Haikuan,DANG Wei,ZHANG Ke,et al. Two decades of shale gas research and development in China:Review and prospects[J]. Natural Gas Industry,2024,44(3):20–52.(in Chinese))
[11] 邹才能,赵 群,王红岩,等. 中国海相页岩气主要特征及勘探开发主体理论与技术[J]. 天然气工业,2022,42(8):1–13.(ZOU Caineng,ZHAO Qun,WANG Hongyan,et al. The main characteristics of marine shale gas and the theory and technology of exploration and development in China[J]. Natural Gas Industry,2022,42(8):1–13. (in Chinese))
[12] SKOUMAL R J,RIES R,BRUDZINSKI M R,et al. Earthquakes induced by hydraulic fracturing are pervasive in oklahoma[J]. Journal of Geophysical Research:solid Earth,2018,123(12):10 918– 10 935.
[13] 缪思钰,张海江,古 宁,等. 基于地震和InSAR联合反演2018年ML5.7兴文地震破裂过程[J]. 地震地质,2024,46(2):397–413.(MIAO Siyu,ZHANG Haijiang,GU Ning,et al. Joint inversion of the rupture process of 2018 ML5.7 Xingwen earthquake based on seismic and InSAR observations[J]. Seismology and Geology,2024,46(2):397–413.(in Chinese))
[14] LEI X L,WANG Z W,SU J R. The December 2018 ML5. 7 and January 2019 ML5.3 earthquakes in South Sichuan Basin induced by shale gas hydraulic fracturing[J]. Seismological Research Letters,2019,90(3):1 099–1 110.
[15] 张 娜,周连庆,李志恒,等. 流体注入诱发地震活动的典型特征与研究进展[J]. 地球物理学进展,2024,39(6):2 188–2 206. (ZHANG Na,ZHOU Lianqing,LI Zhiheng,et al. Typical characteristics and progress in studies of the fluid injection-induced earthquake[J]. Progress in Geophysics,2024,39(6):2 188–2 206.(in Chinese))
[16] TAN Y Y,HU J,ZHANG H J,et al. Hydraulic fracturing induced seismicity in the Southern Sichuan Basin due to fluid diffusion inferred from seismic and injection data analysis[J]. Geophysical Research Letters,2020,47(4):e2019GL084885.
[17] 左可桢,赵翠萍. 四川长宁地区地震震源参数的时空分布特征[J]. 中国地震,2021,37(2):472–482.(ZUO Kezhen,ZHAO Cuiping. The spatial and temporal distribution of source parameters of earthquakes in Changning area,Sichuan Province[J]. Earthquake Research in China,2021,37(2):472–482.(in Chinese))
[18] 雷兴林,苏金蓉,王志伟. 四川盆地南部持续增长的地震活动及其与工业注水活动的关联[J]. 中国科学:地球科学,2020,50(11):1 505–1 532.(LEI Xinglin,SU Jinrong,WANG Zhiwei. Growing seismicity in the Sichuan Basin and its association with industrial activities[J]. Science China:Earth Sciences,2020,50(11):1 505–1 532.(in Chinese))
[19] 刘汉青,胡才博,石耀霖. 页岩油气开发诱发地震的研究现状及进展——以加拿大、美国和中国为例[J]. 地震工程学报,2024,46(5):1 179–1 195.(LIU Hanqing,HU Caibo,SHI Yaolin. Advances in induced seismicity from shale oil and gas development:case studies in Canada,the United States,and China[J]. China Earthquake Engineering Journal,2024,46(5):1 179–1 195.(in Chinese))
[20] ELLSWORTH W L. Injection–induced earthquakes[J]. Science,2013,341:1225942.
[21] 谢克昌. 新型能源体系发展思考与建议[J]. 中国工程科学,2024,26(4):1–8.(XIE Kechang. Strategic thinking and suggestions on new energy system[J]. Strategic Study of CAE,2024,26(4):1–8.(in Chinese))
[22] 王国荣,周 莉,周守为,等. 多种能源融合发展战略研究[J]. 中国工程科学,2024,26(4):84–95.(WANG Guorong,ZHOU Li,ZHOU Shouwei,et al. Multi-energy integrated development strategy[J]. Strategic Study of CAE,2024,26(4):84–95.(in Chinese))
[23] 王 铃,黄丽敏,韩 宇,等. 全球石油化工行业发展趋势及我国对策建议[J]. 中外能源,2024,29(9):1–8.(WANG Ling,HUANG Limin,HAN Yu,et al. Development trend of global petrochemical industry and suggestions for China[J]. Sino-Global Energy,2024,29(9):1–8.(in Chinese))
[24] 张鹏伟,刘焕通,刘保国,等. 基于流固耦合的水力压裂过程断层失稳规律研究[J]. 工程地质学报,2024,32(4):1 439–1 446. (ZHANG Pengwei,LIU Huantong,LIU Baoguo,et al. Study on faults instability law in hydraulic fracturing based on fluid-solid coupling method[J]. Journal of Engineering Geology,2024,32(4):1 439–1 446.(in Chinese))
[25] TAN Y Y,OIAN J W,HU J,et al. Tomographic evidences for hydraulic fracturing induced seismicity in the Changning shale gas field southern Sichuan Basin,China[J]. Earth and Planetary Science Letters,2023,605:118021.
[26] 王礼恒,董艳辉,杨 春,等. 页岩气水力压裂开发的环境效应研究进展[J]. 工程地质学报,2024,32(4):1 447–1 458.(WANG Liheng,DONG Yanhui,YANG Chun,et al. Environmental impacts of shale gas hydraulic fracturing development:a critical review[J]. Journal of Engineering Geology,2024,32(4):1 447–1 458.(in Chinese))
[27] 邓乃尔,徐 浩,邓虎成,等. 断裂系统对现今地应力扰动特征研究——以四川盆地泸州北区深层页岩气为例[J]. 中国地质,2025,52(1):95–110.(DENG Naier,XU Hao,DENG Hucheng,et al. Characteristics of fracture system disturbance on present-day geostress:An example of deep shale gas in the North Luzhou district,Sichuan Basin[J]. Geology in China,2025,52(1):95–110.(in Chinese))
[28] ZHANG F,WANG R,CHEN Y,et al. Spatiotemporal variations in earthquake triggering mechanisms during multistage hydraulic fracturing in Western Canada[J]. Journal of Geophysical Research:Solid Earth,2022,127(8):e2022JB024744.
[29] 杜炳毅,高建虎,张广智,等. 裂缝密度反演的页岩储层地应力地震预测方法及应用[J]. 石油地球物理勘探,2024,59(2):279–289.(DU Bingyi,GAO Jianhu,ZHANG Guangzhi,et al. Research and application of in-situ stress seismic data-based prediction approach of shale reservoirs based on fracture density inversion[J]. Oil Geophysical Prospecting,2024,59(2):279–289.(in Chinese))
[30] 石学文,王 畅,张洞君,等. 四川盆地泸州北区五峰组—龙马溪组深层页岩气储层地应力地震预测技术[J]. 天然气地球科学,2024,35(11):2 025–2 040.(SHI Xuewen,WANG Chang,ZHANG Dongjun,et al. Stress seismic prediction technology of deep shale gas reservoir of Wufeng-Longmaxi formations in North Luzhou District,Sichuan Basin[J]. Natural Gas Geoscience,2024,35(11):2 025– 2 040.(in Chinese))
[31] 张入化,王秀姣,石学文,等. 页岩气藏高精度地震地层压力预测方法及应用[J]. 海相油气地质,2023,28(4):425–432.(ZHANG Ruhua,WANG Xiujiao,SHI Xuewen,et al. High precision seismic formation pressure prediction method and application for shale gas reservoirs[J]. Marine Origin Petroleum Geology,2023,28(4):425–432. (in Chinese))
[32] 庞一桢,陈孔全,张培先,等. 渝东南武隆地区志留系龙马溪组页岩储层的古构造应力场模拟[J]. 地震学报,2025,47(1):73–92. (PANG Yizhen,CHEN Kongquan,ZHANG Peixian,et al. Simulation of paleotectonic stress field of Silurian Longmaxi formation in Wulong area of Southeastern Chongqing[J]. Acta Seismologica Sinica,2025,47(1):73–92.(in Chinese))
[33] 王静波,敬朋贵,陈祖庆,等. 面向深层页岩气“甜点”预测的地震勘探技术进展——以DX探区全方位三维地震为例[J]. 石油物探,2023,62(6):1 154–1 167.(WANG Jingbo,JING Penggui,CHEN Zuqing,et al. Recent seismic technology advances for deep shale gas“sweet spot”prediction:A case study on full-azimuth 3D seismic exploration in DX[J]. Geophysical Prospecting for Petroleum,2023,62(6):1 154–1 167.(in Chinese))
[34] 陈 颖,田 雯,吴庆举,等. 长宁—昭通页岩气示范区小微地震地方性震级测定[J]. 地球物理学报,2024,67(3):947–959. (CHEN Ying,TIAN Wen,WU Qingju,et al. Local magnitude measurement of small-micro earthquakes in the Changning—Zhaotong shale gas demonstration zone[J]. Chinese Journal of Geophysics,2024,67(3):947–959.(in Chinese))
[35] 刘树根,邓 宾,钟 勇,等. 四川盆地及周缘下古生界页岩气深埋藏——强改造独特地质作用[J]. 地学前缘,2016,23(1):11–28. (LIU Shugen,DENG Bin,ZHONG Yong,et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers,2016,23(1):11–28.(in Chinese))
[36] 冷 玥,赵迪斐,郭英海,等. 页岩气储层测井评价技术研究与应用现状[J]. 非常规油气,2019,6(6):117–123.(LENG Yue,ZHAO Difei,GUO Yinghai,et al. The application status of shale gas reservoir logging evaluation[J]. Unconventional Oil and Gas,2019,6(6):117–123.(in Chinese))
[37] 李 轲,陈 杨,牟必鑫,等. 西昌盆地南部地区志留系龙马溪组页岩气保存条件的评价[J]. 非常规油气,2021,8(1):34–42. (LI Ke,CHEN Yang,MOU Bixin,et al. Evaluation of shale gas preservation conditions in Longmaxi formation of silurian in Southern Xichang Basin[J]. Unconventional Oil and Gas,2021,8(1):34–42. (in Chinese))
[38] SCHULTZ R,WANG R,GU Y J,et al. A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek,Alberta[J]. Journal of Geophysical Research:Solid Earth,2017,122(1):492–505.
[39] SHAPIRO S A,KRÜGER O S,DINSKE C,et al. Magnitudes of induced earthquakes and geometric scales of fluid-stimulated rock volumes[J]. Geophysics,2011,76(6):WC55–WC63.
[40] GRIGOLI F,CESCA S,PRIOLO E,et al. Current challenges in monitoring,discrimination,and management of induced seismicity related to underground industrial activities:A European perspective[J]. Reviews of Geophysics,2017,55(2):310–340.
[41] 陈 鹏,吴中海,马立成,等. 地下资源开采与诱发地震:现状与进展[J]. 地质论评,2023,69(2):691–700.(CHEN Peng,WU Zhonghai,MA Licheng,et al. Underground resource exploiting and induced earthquake:State and progress[J]. Geological Review,2023,69(2):691–700.(in Chinese))
[42] RALEIGH C B,HEALY J H,BREDEHOEFT J D. An experiment in earthquake control at Rangely,Colorado[J]. Science,1976,191: 1 230–1 237.
[43] GUGLIELMI Y,CAPPA F,AVOUAC J P,et al. Seismicity triggered by fluid injection-induced aseismic slip[J]. Science,2015,348:1 224–1 226.
[44] 国家能源局.页岩气发展规划(2016–2020年)[OL]. https:// www.gov.cn/xinwen/2016–09/30/content_5114313.htm,2016/09/14. (National Energy Administration of the People?s Republic of China. Shale Gas Development Plan(2016–2020)[OL]. https://www.gov. cn/xinwen/2016–09/30/content_5114313.htm,2016/09/14.(in Chinese))
[45] 邹才能,赵 群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业,2021,41(1):1–14.(ZOU Caineng,ZHAO Qun,CONG Lianzhu,et al. Development progress,potential and prospects of shale gas in China[J]. Natural Gas Industry,2021,41(1):1–14.(in Chinese))
[46] LI L,TAN J,WOOD D A,et al. A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs[J]. Fuel,2019,242:195–210.
[47] EYRE T S,EATON D W,GARAGASH D I,et al. The role of aseismic slip in hydraulic fracturing-induced seismicity[J]. Science Advances,2019,5(8):eaav7172.
[48] 张 捷,况文欢,张 雄,等. 全球油气开采诱发地震的研究现状与对策[J]. 地球与行星物理论评,2021,52(3):239–265. (ZHANG Jie,KUANG Wenhuan,ZHANG Xiong,et al. Global review of induced earthquakes in oil and gas production fields[J]. Reviews of Geophysics and Planetary Physics,2021,52(3):239–265.(in Chinese))
[49] ELSWORTH D,SPIERS C J,NIEMEIJER A R. Understanding induced seismicity[J]. Science,2016,354:1 380–1 381.
[50] 刘清友,朱海燕,唐煊赫,等. 四川盆地页岩气地质工程一体化高效开发关键技术与装备[J]. 大庆石油地质与开发,2024,43(4):191–203.(LIU Qingyou,ZHU Haiyan,TANG Xuanhe,et al. Key technologies and equipment for efficient ntegrated geoscience‐engineering development of shale gas in Sichuan Basin[J]. Petroleum Geology and Oilfield Development in Daqing,2024,43(4):191–203.(in Chinese))
[51] 高梁红. 打不倒的“磕头机”[J]. 石油知识,2020,(4):9.(GAO Lianghong. The indestructible pumping jack[J]. Petroleum Knowledge,2020,(4):9.(in Chinese))
[52] FJAR E,HOLT R M,RAAEN A M,et al. Petroleum related rock mechanics[M]. Amsterdam:Elsevier,2008:309–336.
[53] 陈 勉,金 衍,张广清. 石油工程岩石力学[M]. 北京:科学出版社,2008:99–160.(CHEN Mian,JIN Yan,ZHANG Guangqing. Petroleum engineering rock mechanics[M]. Beijing:Science Press,2008:99–160.(in Chinese))
[54] ZIMMERMANN G,ZANG A,STEPHANSSON O,et al. Permeability enhancement and fracture development of hydraulic in situ experiments in the Äspö Hard Rock Laboratory,Sweden[J]. Rock Mechanics and Rock Engineering,2019,52(2):495–515.
[55] ZANG A,ZIMMERMANN G,HOFMANN H,et al. How to reduce fluid-injection-induced seismicity[J]. Rock Mechanics and Rock Engineering,2019,52(2):475–493.
[56] 王 尧,郭迟辉,吕承训,等. 国际水力压裂与地震关系研究进展及地质工作建议[J]. 地质通报,2023,42(增1):193–200. (WANG Yao,GUO Chihui,LV Chengxun,et al. Research progress on the relationship between international hydraulic fracturing and earthquakes and suggestions for geological work[J]. Geological Bulletin of China,2023,42(Supp.1):193–200.(in Chinese))
[57] ZHAO X,HUANG B,WANG Z. Experimental investigation on the basic law of directional hydraulic fracturing controlled by dense linear multi-hole drilling[J]. Rock Mechanics and Rock Engineering,2018,51(6):1 739–1 754.
[58] XING Y,ZHANG G,LUO T,et al. Hydraulic fracturing in high-temperature granite characterized by acoustic emission[J]. Journal of Petroleum Science and Engineering,2019,178:475–484.
[59] KERANEN K M,WEINGARTEN M,ABERS G A,et al. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection[J]. Science,2014,345:448–451.
[60] WEINGARTEN M,GE S,GODT J W,et al. High-rate injection is associated with the increase in US mid-continent seismicity[J]. Science,2015,348(6241):1 336–1 340.
[61] FOLGER P,TIEMANN M. Human-induced earthquakes from deep-well injection:A brief overview[R]. Washington D. C:Congressional Research Service,2016.
[62] TERZAGHI K. The shearing resistance of saturated soils and the angle between the planes of shear[C]// Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering. New York:[s. n.],1936:54–56.
[63] ZHAO X L,HUANG B X,XU J. Experimental investigation on the characteristics of fractures initiation and propagation for gas fracturing by using air as fracturing fluid under true triaxial stresses[J]. Fuel,2019,236:1 496–1 504.
[64] HUANG B,ZHAO X L,XUE W C,et al. Experimental investigation on the impact of initial pore pressure on breakdown pressure of borehole radial fracture for unsaturated mortar hydraulic fracturing under true triaxial stress[J]. Journal of Porous Media,2018,21(11):1 041– 1 057.
[65] WANG L L,ZHANG G Q,HALLAIS S,et al. Swelling of shales:A multiscale experimental investigation[J]. Energy and Fuels,2017,31(10):10 442–10 451.
[66] LIU K,SHENG J J. Experimental study of the effect of stress anisotropy on fracture propagation in Eagle Ford shale under water imbibition[J]. Engineering Geology,2019,249:13–22.
[67] ATKINSON B K. Subcritical crack growth in geological materials[J]. Journal of Geophysical Research:Solid Earth,1984,89(B6): 4 077–4 114.
[68] 邓 宾,雍自权,刘树根,等. 青藏高原东南缘大凉山新生代隆升建造过程:多封闭系统低温热年代学与热模型限制[J]. 地球物理学报,2016,59(6):2 162–2 175.(DENG Bin,YONG Ziquan,LIU Shugen,et al. Cenozoic mountain-building processes in the Daliangshan,southeastern margin of the Tibetan Plateau:Evidence from low-temperature thermochronology and thermal modeling[J]. Chinese Journal of Geophysics,2016,59(6):2 162–2 175.(in Chinese))
[69] 何登发,鲁人齐,黄涵宇,等. 长宁页岩气开发区地震的构造地质背景[J]. 石油勘探与开发,2019,46(5):1–14.(HE Dengfa,LU Renqi,HUANG Hanyu,et al. Tectonic and geological background of the earthquake hazards in Changning shale gas development zone,Sichuan Basin,SW China[J]. Petroleum Exploration and Development,2019,46(5):1–14.(in Chinese))
[70] 王红岩,刘玉章,董大忠,等. 中国南方海相页岩气高效开发的科学问题[J]. 石油勘探与开发,2013,40(5):574–579.(WANG Hongyan,LIU Yuzhang,DONG Dazhong,et al. Scientific issues on effective development of marine shale gas in Southern China[J]. Petroleum Exploration and Development,2013,40(5):574–579. (in Chinese))
[71] 李霞颖,雷兴林,李 琦,等. 油气田典型岩石三轴压缩变形破坏与声发射活动特征:四川盆地震旦系白云岩及页岩的破坏过程[J]. 地球物理学报,2015,58(3):982–992.(LI Xiaying,LEI Xinglin,LI Qi,et al. Characteristies of acoustie emission during deformation and failure of typical reservoir rocks under triaxial compression:An example of Sinian dolomite and shale in the Sichuan Basin[J]. Chinese Journal of Geophysics,2015,58(3):982–992.(in Chinese))
[72] 郑志红,李登华,白森舒,等. 四川盆地天然气资源潜力[J]. 中国石油勘探,2017,22(3):12–20.(ZHENG Zhihong,LI Denghua,BAI Senshu,et al. Resource potentials of natural gas in Sichuan Basin[J]. China Petroleum Exploration,2017,22(3):12–20.(in Chinese))
[73] EATON D W. Passive seismic monitoring of induced seismicity:Fundamental principles and application to energy technologies[M]. Cambridge:Cambridge University Press,2018:51–93.
[74] AKI K,RICHARDS P. Quantitative seismology[M]. California:University Science Books,2002:119–183.
[75] 李 创,程冰洁,徐天吉,等. 基于OVT域HTI介质衰减各向异性的储层裂缝预测方法及应用[J]. 石油地球物理勘探,2024,59(6):1 340–1 352.(LI Chuang,CHENG Bingjie,XU Tianji,et al. Reservoir fracture prediction based on OVT domain HTI medium attenuation anisotropy and its application[J]. Oil Geophysical Prospecting,2024,59(6):1 340–1 352.(in Chinese))
[76] 杜启振,杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究[J]. 物理学报,2002,51(9):2 101–2 108.(DU Qizhen,YANG Huizhu. Velocity dispersion and attenuation in anisotropic linear viscoelastic media[J]. Acta Physica Sinica,2002,51(9):2 101– 2 108.(in Chinese))
[77] 何现启,朱自强,彭凌星,等. 黏弹性EDA介质中地震波的衰减特性研究[J]. 地震学报,2015,37(6):973–982.(HE Xianqi,ZHU Ziqiang,PENG Lingxing,et al. Attenuation characteristics of seismic wave in viscoelastic EDA media[J]. Acta Seismologica Sinica,2015,37(6):973–982.(in Chinese))
[78] LEI X,WANG Z,SU J. The December 2018 ML 5.7 and January 2019 ML 5.3 earthquakes in south Sichuan basin induced by shale gas hydraulic fracturing[J]. Seismological Research Letters,2019,90(3):1 099–1 110.
[79] WARPINSKI N R,DU J,ZIMMER U. Measurements of hydraulic-fracture-induced seismicity in gas shales[J]. SPE Production and Operations,2012,27(3):240–252.
[80] ATKINSON G M,EATON D W,IGONIN N. Developments in understanding seismicity triggered by hydraulic fracturing[J]. Nature Reviews Earth and Environment,2020,1(5):264–277.
[81] 周 云. 土木工程防灾减灾学[M]. 广州:华南理工大学出版社,2005:10–35.(ZHOU Yun. Civil engineering of disaster prevention and mitigation[M]. Guangzhou:South China University of Technology Press,2005:10–35.(in Chinese))
[82] MENG L,MCGARR A,ZHOU L,et al. An investigation of seismicity induced by hydraulic fracturing in the Sichuan basin of China based on data from a temporary seismic network[J]. Bulletin of the Seismological Society of America,2019,109(1):348–357.
[83] RODRIGUEZ-PRADILLA G,VERDON J P. Quantifying the variability in fault density across the UK bowland shale with implications for induced seismicity hazard[J]. Geomechanics for Energy and the Environment,2024,38:100534.
[84] 祝叶华. 水力压裂法开采页岩气会诱发地震吗[J]. 科技导报,2014,32(8):9.(ZHU Yehua. Does hydraulic fracturing for shale gas extraction induce seismicity?[J]. Science and Technology Review,2014,32(8):9.(in Chinese))
[85] WANG R,GU Y J,SCHULTZ R,et al. Source characteristics and geological implications of the January 2016 induced earthquake swarm near Crooked Lake,Alberta[J]. Geophysical Journal International,2017,210(2):979–988.
[86] KOLAWOLE F,JOHNSTON C S,MORGAN C B,et al. The susceptibility of Oklahoma?s basement to seismic reactivation[J]. Nature Geoscience,2019,12(10):839–844.
[87] ATKINSON G M,EATON D W,GHOFRANI H,et al. Hydraulic fracturing and seismicity in the western Canada sedimentary basin[J]. Seismological Research Letters,2016,87(3):631–647.
[88] FOULGER G R,WILSON M P,GLUYAS J G,et al. Global review of human-induced earthquakes[J]. Earth-Science Reviews,2018,178:438–514.
[89] LANGENBRUCH C,ZOBACK M D. How will induced seismicity in oklahoma respond to decreased saltwater injection rates?[J]. Science Advances,2016,2(11):e1601542.
[90] WALSH F R,ZOBACK M D. Oklahoma?s recent earthquakes and saltwater disposal[J]. Science Advances,2015,1(5):e1500195.
[91] DAVIS M,KARLEN G. A regional assessment of the Duvernay Formation:a world-class liquids-rich shale play[R]. Calgary:[s. n.],2023.
[92] SCHULTZ R,ATKINSON G,EATON D W,et al. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play[J]. Science,2018,359:304–308.
[93] HWANG B,HEO J,LIM C,et al. Environmental implications of shale gas hydraulic fracturing:a comprehensive review on water contamination and seismic activity in the United States[J]. Water,2023,15(19):3 334.
[94] HORNE E A,HENNINGS P,SMYE K M,et al. Interpretation,characterization,and slip hazard assessment of faults in the midland basin,west texas,united states[J]. AAPG Bulletin,2024,108(12):2 313–2 346.
[95] BOLTON D C,AFFINITO R,SMYE K,et al. Frictional and poromechanical properties of the delaware mountain group:insights into induced seismicity in the delaware basin[J]. Earth and Planetary Science Letters,2023,623:118436.
[96] SKOUMAL R J,BARBOUR A J,BRUDZINSKI M R,et al. Induced seismicity in the delaware basin,texas[J]. Journal of Geophysical Research–Solid Earth,2020,125(1):e2019JB018558.
[97] PETERSEN M D,MUELLER C S,MOSCHETTI M P,et al. 2017 one-year seismic-hazard forecast for the central and eastern United States from induced and natural earthquakes[J]. Seismological Research Letters,2017,88(3):772–783.
[98] RAJESH R,GUPTA H K. Characterization of injection-induced seismicity at north central oklahoma,USA[J]. Journal of Seismology,2021,25(1):327–337.
[99] HOUGH S E,PAGE M. A century of induced earthquakes in oklahoma?[J]. Bulletin of the Seismological Society of America,2015,105(6):2 863–2 870.
[100] GE S,SAAR M O. Review:induced seismicity during geoenergy development—A hydromechanical perspective[J]. Journal of Geophysical Research–Solid Earth,2022,127(3):e2021JB023141.
[101] BAO X,EATON D W. Fault activation by hydraulic fracturing in western Canada[J]. Science,2016,354(6318):1 406–1 409.
[102] RUBINSTEIN J L,MAHANI A B. Myths and facts on wastewater injection,hydraulic fracturing,enhanced oil recovery,and induced seismicity[J]. Seismological Research Letters,2015,86(4):1 060–1 067.
[103] KERANEN K M,WEINGARTEN M. Induced seismicity[J]. Annual Review of Earth and Planetary Sciences,2018,46:149–174.
[104] LIU J,JI?Í Z. The 2019 MW 5.7 Changning earthquake,Sichuan Basin,China—A shallow doublet with different faulting styles[J]. Geophysical Research Letters,2020,47(4):e2019GL085408.
[105] VAN D E N J,PAGE M T,WEISER D A,et al. Induced earthquake magnitudes are as large as(statistically) expected[J]. Journal of Geophysical Research–Solid Earth,2016,121(6):4 575–4 590.
[106] 考佳玮,金 衍,付卫能,等. 深层页岩在高水平应力差作用下压裂裂缝形态实验研究[J]. 岩石力学与工程学报,2018,37(6): 1 332–1 339.(KAO Jiawei,JIN Yan,FU Weining,et al. Experimental research on the morphology of hydraulic fractures in deep shale under high difference of in-situ horizontal stresses[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(6):1 332–1 339.(in Chinese))
[107] ZHANG Y,FU L Y,MA Y,et al. Different hydraulic responses to the 2008 Wenchuan and 2011 Tohoku earthquakes in two adjacent far-field wells:the effect of shales on aquifer lithology[J]. Earth,Planets and Space,2016,68(1):178.
[108] 张 艳,符力耘,陈学忠,等. 相邻两井对大地震的不同水力响应模型研究——页岩影响分析[J]. 地球物理学报,2019,62(1):143–158.(ZHANG Yan,FU Liyun,CHEN Xuezhong,et al. Study of different hydraulic response models to large earthquakes in two adjacent wells:the effect of shales[J]. Chinese Journal of Geophysics,2019,62(1):143–158.(in Chinese))
[109] 朱海燕,黄楚淏,唐煊赫. 裂缝性页岩储层水力压裂多簇裂缝扩展的FEM-DFN数值模拟[J]. 岩石力学与工程学报,2023,42(增1):3 496–3 507.(ZHU Haiyan,HUANG Chuhao,TANG Xuanhe. Numerical simulation of multi-cluster fractures propagation in naturally fractured shale reservoir based on finite element method-discrete fracture network[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(Supp.1):3 496–3 507.(in Chinese))
[110] KIM W Y. Induced seismicity associated with fluid injection into a deep well in Youngstown,Ohio[J]. Journal of Geophysical Research:Solid Earth,2013,118(7):3 506–3 518.
[111] SCHULTZ R,MEI S,PANA D,et al. The Cardston earthquake swarm and hydraulic fracturing of the Exshaw Formation(Alberta Bakken play)[J]. Bulletin of the Seismological Society of America,2015,105(6):2 871–2 884.
[112] SCHULTZ R,STERN V,NOVAKOVIC M,et al. Hydraulic fracturing and the Crooked Lake Sequences:Insights gleaned from regional seismic networks[J]. Geophysical Research Letters,2015,42(8):2 750–2 758.
[113] SCHULTZ R,STERN V,GU Y J,et al. Detection threshold and location resolution of the Alberta Geological Survey earthquake catalogue[J]. Seismological Research Letters,2015,86(2A):385–397.
[114] MCGARR A. Maximum magnitude earthquakes induced by fluid injection[J]. Journal of Geophysical Research:Solid Earth,2014,119(2):1 008–1 019.
[115] 曾义金,周 俊,王海涛,等. 深层页岩真三轴变排量水力压裂物理模拟研究[J]. 岩石力学与工程学报,2019,38(9):1 758– 1 766.(ZENG Yijin,ZHOU Jun,WANG Haitao,et al. Research on true triaxial hydraulic fracturing in deep shale with varying pumping rates[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(9):1 758–1 766.(in Chinese))
[116] PEARSON C. The relationship between microseismicity and high pore pressures during hydraulic stimulation experiments in low permeability granitic rocks[J]. Journal of Geophysical Research:Solid Earth,1981,86(B9):7 855–7 864.
[117] SHAPIRO S A,DINSKE C,ROTHERT E. Hydraulic‐fracturing controlled dynamics of microseismic clouds[J]. Geophysical Research Letters,2006,33(14):L14312.
[118] BAIG A,URBANCIC T. Microseismic moment tensors:A path to understanding frac growth[J]. The Leading Edge,2010,29(3):320–324.
[119] EISNER L,WILLIAMS-STROUD S,HILL A,et al. Beyond the dots in the box:Microseismicity-constrained fracture models for reservoir simulation[J]. The Leading Edge,2010,29(3):326–333.
[120] RUTLEDGE J,DOWNIE R,MAXWELL S,et al. Extension-shear microseismic mechanisms during hydraulic fracturing[C]// SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists,[S. l.]:[s. n.],2013:2 067–2 072.
[121] STANěK F,EISNER L. Seismicity induced by hydraulic fracturing in shales:A bedding plane slip model[J]. Journal of Geophysical Research:Solid Earth,2017,122(10):7 912–7 926.
[122] RUTLEDGE J T,PHILLIPS W S,Mayerhofer M J. Faulting induced by forced fluid injection and fluid flow forced by faulting:An interpretation of hydraulic–fracture microseismicity,Carthage Cotton Valley gas field,Texas[J]. Bulletin of the Seismological Society of America,2004,94(5):1 817–1 830.
[123] ZOBACK M D. Reservoir geomechanics[M]. Cambridge:Cambridge University Press,2007:384–390.
[124] SHAPIRO S A. Fluid-induced seismicity[M]. Cambridge:Cambridge University Press,2015:15–20.
[125] 卢义玉,赵贵林,汤积仁,等. 页岩平行/垂直层理剪切裂缝导流特性对比研究[J]. 岩石力学与工程学报,2024,43(2):298–307. (LU Yiyu,ZHAO Guilin,TANG Jiren,et al. Comparative study of shale parallel/vertical laminar shear fracture inflow characteristics[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(2):298–307.(in Chinese))
[126] 李 芷,贾长贵,杨春和,等. 页岩水力压裂水力裂缝与层理面扩展规律研究[J]. 岩石力学与工程学报,2015,34(1):12–20.(LI Zhi,JIA Changgui,YANG Chunhe,et al. Propagation of hydraulic fissures and bedding planes in hydraulic fracturing of shale[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(1):12–20.(in Chinese))
[127] SHAPIRO S A,DINSKE C. Fluid‐induced seismicity:Pressure diffusion and hydraulic fracturing[J]. Geophysical Prospecting,2009,57(2):301–310.
[128] SEGALL P,LU S. Injection‐induced seismicity:Poroelastic and earthquake nucleation effects[J]. Journal of Geophysical Research:Solid Earth,2015,120(7):5 082–5 103.
[129] EATON D W,VAN D B M,BIRKELO B,et al. Scaling relations and spectral characteristics of tensile microseisms:Evidence for opening/closing cracks during hydraulic fracturing[J]. Geophysical Journal International,2014,196(3):1 844–1 857.
[130] XING Y,ZHANG G,WAN B,et al. Subcritical fracturing of sandstone characterized by the acoustic emission energy[J]. Rock Mechanics and Rock Engineering,2019,52(7):2 459–2 469.
[131] Oklahoma Corporation Commission(news release). New protocol to further address seismicity in state?s largest oil and gas play[EB/OL]. https://www.occeweb.com/og/02–27–18PROTOCOL.pdf,2018.
[132] NYGAARD K J,CARDENAS J,KRISHNA P P,et al. Technical considerations associated with risk management of potential induced seismicity in injection operations[R]. Rosario:Production and Development of Hydrocarbon Resources Congress,2013.
[133] HU J,CHEN J,CHEN Z,et al. Risk assessment of seismic hazards in hydraulic fracturing areas based on fuzzy comprehensive evaluation and AHP method(FAHP):A case analysis of Shangluo area in Yibin City,Sichuan Province,China[J]. Journal of Petroleum Science and Engineering,2018,170:797–812.
[134] WARPINSKI N R,MAYERHOFER M J,VINCENT M C,et al. Stimulating unconventional reservoirs:maximizing network growth while optimizing fracture conductivity[J]. Journal of Canadian Petroleum Technology,2009,48(10):39–51.
[135] 王 新,张 薇,陈同俊,等. 基于CBAM-TransUNet的地震断层识别方法[J]. 煤炭学报,2025,50(2):1 192–1 202.(WANG Xin,ZHANG Wei,CHEN Tongjun,et al. Seismic fault identification method based on CBAM-TransUNet[J]. Journal of China Coal Society,2025,50(2):1 192–1 202.(in Chinese))
[136] BURDINE N T. Rock failure under dynamic loading conditions[J]. SPE Journal,1963,3(1):1–8.
[137] ATTAWEL P B,FARMER I W. Fatigue behavior of rock[J]. International Journal of Rock Mechanics and Mining Science,1973,10(1):1–9.
[138] EVANS A G,FULLER E R. Crack propagation in ceramic materials under cyclic loading conditions[J]. Metallurgical Transactions,1974,5:27–33.