Pre-failure precursors of the locked strike-slip fault model based on strain-acoustic emission coupling
NIU Yao1, 2, TAO Zhigang1, 2, SU Zhandong3, 4, HE Manchao1, 2, REN Shulin5
(1. State Key Laboratory for Tunnel Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;
2. School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;
3. Department of Geological Engineering, Institute of Disaster Prevention, Sanhe, Hebei 065201, China; 4. Hebei Key
Laboratory of Earthquake Disaster Prevention and Risk Assessment, Sanhe, Hebei 065201, China;
5. College of Civil Engineering, Tongji University, Shanghai 200092, China)
Abstract:The locked segment is a critical seismogenic tectonic unit controlling the transition of a fault from stable slipping to unstable rupture. To investigate precursory characteristics of fault instability (e.g., stress disturbance, rupture damage near the locked segment), a 2 m × 1 m × 0.6 m locked strike-slip fault model was fabricated using river sand, cement, barite powder, and gypsum. Embedded strain cubes and acoustic emission (AE) technology were used to monitor the locked segment?s local strain and model rupture nucleation process under horizontal uniaxial loading. The study focused on local principal stress deflection near the locked segment, temporal variations of AE events, and accelerated strain release phenomenon before model instability. The results indicate that the instability process of the model can be divided into a stable, sub-stable, sub-unstable and unstable stages, based on the stress state. Abrupt strain rate increase and abnormal high value of the loading-unloading response ratio (LURR) at the end of the sub-unstable stage predict fault instability. Shear stress at locked segment’s ends undergoes an abrupt change before model instability. The surge in AE events acts as an early precursor for the fault entering the sub-unstable stage, and the b-value maintains a low level until fault instability manifests. Cumulative Benioff strain (CBS) release of AE events adheres to the accelerating strain release (ASR) model, suggesting that the locked strike-slip fault model features sudden instability. The strong negative correlation between the deflection angle in dilatation stress quadrants and CBS suggests sensitive decay of this deflection angle may predict the fault system instability. The above results provide experimental evidence for understanding the local stress evolution, strain release, and activity characteristics of locked strike-slip faults.
牛 耀1,2,陶志刚1,2,苏占东3,4,何满潮1,2,任树林5. 基于应变–声发射耦合的锁固型走滑断裂模型失稳前兆特征研究[J]. 岩石力学与工程学报, 2025, 44(11): 2975-2988.
NIU Yao1, 2, TAO Zhigang1, 2, SU Zhandong3, 4, HE Manchao1, 2, REN Shulin5. Pre-failure precursors of the locked strike-slip fault model based on strain-acoustic emission coupling. , 2025, 44(11): 2975-2988.
[1] HUANG Y,AMPUERO J P,HELMBERGER D V. Earthquake ruptures modulated by waves in damaged fault zones[J]. Journal of Geophysical Research:Solid Earth,2014,119(4):3 133–3 154.
[2] KIM Y S,SANDERSON D J. Earthquake and fault propagation,displacement and damage zones[J]. Structural Geology:New Research,2008,1:99–117.
[3] 陈竑然,秦四清,薛 雷,等. 锁固段之间的力学作用模式[J]. 工程地质学报,2019,27(1):1–13.(CHEN Hongran,QIN Siqing,XUE Lei,et al. Modes of mechanical action between locked segments[J]. Journal of Engineering Geology,2019,27(1):1–13.(in Chinese))
[4] 秦四清,徐锡伟,胡 平,等. 孕震断层的多锁固段脆性破裂机制与地震预测新方法的探索[J]. 地球物理学报,2010,53(4):1 001– 1 014.(QIN Siqing,XU Xiwei,HU Ping,et al. Brittle failure mechanism of multiple locked patches in a seismogenic fault system and exploration on a new way for earthquake prediction[J]. Chinese Journal of Geophysics,2010,53(4):1 001–1 014.(in Chinese))
[5] CHEN H,QIN S,XUE L,et al. Universal precursor seismicity pattern before locked-segment rupture and evolutionary rule for landmark earthquakes[J]. Geoscience Frontiers,2022,13(3):1–13.
[6] LEI X. Fluid-driven fault nucleation,rupture processes,and permeability evolution in Oshima granite—Preliminary results and acoustic emission datasets[J]. Geohazard Mechanics,2024,2(3):164–180.
[7] MCLASKEY G C. Earthquake initiation from laboratory observations and implications for foreshocks[J]. Journal of Geophysical Research:Solid Earth,2019,124(12):12 882–12 904.
[8] KWIATEK G,MARTíNEZ-GARZóN P,BECKER D,et al. Months- long seismicity transients preceding the 2023 MW 7.8 Kahramanmara? earthquake,Türkiye[J]. Nature Communications,2023,14:1–10.
[9] LIN W,YEH E C,HUNG J H,et al. Localized rotation of principal stress around faults and fractures determined from borehole breakouts in hole B of the Taiwan Chelungpu-fault Drilling Project(TCDP)[J]. Tectonophysics,2010,482(1/4):82–91.
[10] SYKES L R,JAUMÉ S C. Seismic activity on neighbouring faults as a long-term precursor to large earthquakes in the San Francisco Bay area[J]. Nature,1990,348:595–599.
[11] 蒋海昆,吴 琼,董 祥,等. 不同温压条件下声发射应变能释放特征——加速模型参数物理含义的初步讨论[J]. 地球物理学报,2009,52(8):2 064–2 073.(JIANG Haikun,WU Qiong,DONG Xiang,et al. Behaviors of AE strain release under the different temperature and pressure condition:discussion on the physical meanings of ASR model parameter[J]. Chinese Journal of Geophysics,2009,52(8):2 064–2 073.(in Chinese))
[12] LEI X,MA S. Laboratory acoustic emission study for earthquake generation process[J]. Earthquake Science,2014,27:627–646.
[13] RIGGIO A,SANTULIN M. Earthquake forecasting:a review of radon as seismic precursor[J]. Bollettino Di Geofisica Teorica e Applicata,2015,56(2):95–114.
[14] UYEDA S,NAGAO T,KAMOGAWA M. Short-term earthquake prediction:Current status of seismo-electromagnetics[J]. Tectonophysics,2009,470(3):205–213.
[15] HOMBERG C,ANGELIER J,BERGERAT F,et al. Using stress deflections to identify slip events in fault systems[J]. Earth and Planetary Science Letters,2004,217(3):409–424.
[16] 赵毅鑫,卢志国,朱广沛,等. 考虑主应力偏转的采动诱发断层活化机制研究[J]. 中国矿业大学学报,2018,47(1):73–80.(ZHAO Yixin,LU Zhiguo,ZHU Guangpei,et al. Fault reactive induced by the principal stress rotation for the underground coal mining[J]. Journal of China University of Mining and Technology,2018,47(1):73–80.(in Chinese))
[17] SU Z,NIU Y,ZANG A,et al. Analysis of stresses in gypsum-cement mortar blocks with strike-slip faults of different orientations inferred from acoustic emission and embedded strain sensors[J]. Rock Mechanics and Rock Engineering,2025,58:3 889–3 908.
[18] SU Z,ZHOU S,ZANG A,et al. Analysis of near-field stresses in an analogue strike-slip fault model[J]. Rock Mechanics and Rock Engineering,2024,57(4):2 739–2 754.
[19] ZHANG S,MA X. How does in situ stress rotate within a fault zone?Insights from explicit modeling of the frictional,fractured rock mass[J]. Journal of Geophysical Research:Solid Earth,2021,126(11):1–23.
[20] 刘中春,吕心瑞,李玉坤,等. 断层对地应力场方向的影响机制[J]. 石油与天然气地质,2016,37(3):387–393.(LIU Zhongchun,LYU Xinrui,LI Yukun,et al. Mechanism of faults acting on in-situ stress field direction[J].Oil and Gas Geology,2016,37(3):387–393.(in Chinese))
[21] HARDEBECK J L,FELZER K R,MICHAEL A J. Improved tests reveal that the accelerating moment release hypothesis is statistically insignificant[J]. Journal of Geophysical Research:Solid Earth,2008,113(B8),doi:10.102912007JB005410..
[22] SCUDERI M,MARONE C,TINTI E,et al. Precursory changes in seismic velocity for the spectrum of earthquake failure modes[J]. Nature Geoscience,2016,9(9):695–700.
[23] 马 瑾,郭彦双. 失稳前断层加速协同化的实验室证据和地震实例[J]. 地震地质,2014,36(3):547–561.(MA Jin,GUO Yanshuang. Accelerated synergism prior to fault instability:evidence from laboratory experiments and an earthquake case[J]. Seismology and Geology,2014,36(3):547–561.(in Chinese))
[24] 赵扬锋,荆 刚,樊 艺,等. 断层黏滑失稳过程微震与电荷信号时频特征研究[J]. 岩石力学与工程学报,2020,39(7):1 385– 1 395.(ZHAO Yangfeng,JING Gang,FAN Yi,et al. Experimental study on the microseism and charge signal time-frequency characteristics in the process of fault stick-slip instability[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(7):1 385– 1 395.(in Chinese))
[25] WANG H,LIU M,DUAN B,et al. Rupture propagation along stepovers of strike-slip faults:Effects of initial stress and fault geometry[J]. Bulletin of the Seismological Society of America,2020,110(3):1 111–1 124.
[26] 苏生瑞,朱合华,王士天,等. 岩石物理力学性质对断裂附近地应力场的影响[J]. 岩石力学与工程学报,2003,22(3):370–377.(SU Shengrui,ZHU Hehua,WANG Shitian,et al. Effect of physical and mechanical properties of rocks on stress field in the vicinity of fractures[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(3):370–377.(in Chinese))
[27] GOEBEL T H W,SCHORLEMMER D,BECKER T W,et al. Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments[J]. Geophysical Research Letters,2013,40(10):2 049–2 054.
[28] 李世念,马 瑾,汲云涛,等. 亚失稳准动态及同震过程变形场时空演化特征——实验与分析[J]. 地震地质,2021,43(1):1–19.(LI Shinian,MA Jin,JI Yuntao,et al. The spatio-temporal evolution of the fault deformation during the meta-instability quasi-dynamic phase and the coseismic stage:A view from laboratory[J]. Seismology and Geology,2021,43(1):1–19.(in Chinese))
[29] THOMPSON B,YOUNG R,LOCKNER D A. Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite[J]. Journal of Geophysical Research:Solid Earth,2009,114(B2):1–14.
[30] LATOUR S,SCHUBNEL A,NIELSEN S,et al. Characterization of nucleation during laboratory earthquakes[J]. Geophysical Research Letters,2013,40(19):5 064–5 069.
[31] LI M,SU Z,ZANG M,et al. Effect of loading rate on local deformation of rock-like models with locked segment[J]. Journal of Materials Research and Technology,2024,33:2 868–2 878.
[32] BARTON N. A model study of rock-joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1972,9(5):579–582.
[33] BANDIS S,LUMSDEN A,BARTON N. Experimental studies of scale effects on the shear behaviour of rock joints[J]. International Journal of Rock Mechanics And Mining Sciences and Geomechanics Abstracts,1981,18(1):1–12.
[34] 牛 耀,苏占东,孙进忠,等. 岩体物理模拟实验中的相似材料配比[J]. 吉林大学学报:地球科学版,2024,54(5):1 645–1 656. (NIU Yao,SU Zhandong,SUN Jinzhong,et al. Proportioning of similar materials in rock physical simulation experiments[J]. Journal of Jilin University:Earth Science,2024,54(5):1 645–1 656.(in Chinese))
[35] 张 翼,宴金旭,赵雪慧,等. 四川泸定Ms 6.8地震灾害主要特征分析[J]. 中国地震,2023,39(1):1–20.(ZHANG Yi,YAN Jinxu,ZHAO Xuehui,et al. A study on main characteristics of disaster by the Luding Ms 6.8 earthquake[J]. Earthquake Research in China,2023,39(1):1–20.(in Chinese))
[36] 张永双,马寅生,胡道功,等. 玉树地震地表破裂调查与灾后重建避让选址研究[J]. 地质学报,2010,84(5):593–605.(ZHANG Yongshuang,MA Yinsheng,HU Daogong,et al. Investigation and research on the surface rupture of the Yushu Earthquake and reconstruction site selection[J]. Acta Geologica Sinica,2010,84(5):593–605.(in Chinese))
[37] 尹祥础,陈学忠,宋治平. 加卸载响应比理论及其在地震预测中的应用研究进展[J]. 地球物理学报,1994,37(增1):223–230.(YIN Xiangchu,CHEN Xuezhong,SONG Zhiping. The development of load-unload response ratio theory and its application to earthquake prediction[J]. Chinese Journal of Geophysics,1994,37(Supp.1): 223–230.(in Chinese))
[38] 岳 冲,牛安福,余怀忠,等. 九寨沟MS 7.0地震前地应变LURR异常演化特征[J]. 中国地震,2020,36(2):267–275.(YUE Chong,NIU Anfu,YU Huaizhong,et al. Evolutionary characteristics of ground strain LURR anomaly before Jiuzhaigou Ms 7.0 earthquake[J]. Earthquake Research in China,2020,36(2):267–275.(in Chinese))
[39] 贾东辉,余怀忠,陈界宏,等. 利用加卸载响应比探查强震成核过程——以2020年新疆伽师6.4级地震为例[J]. 地球物理学报,2024,67(6):2 132–2 147.(JIA Donghui,YU Huaizhong,CHEN Jiehong,et al. Study on the nucleation process of strong earthquakes using the load/unload response ratio method—Taking the 2020 MS 6.4 Jiashi,Xinjiang earthquake as an example[J]. Chinese Journal of Geophysics,2024,67(6):2 132–2 147.(in Chinese))
[40] 罗灼礼. 震源应力场、形变场和倾斜场[J]. 地震学报,1980,2(2):169–185.(LUO Zhuoli. Stress deformation and tilt fields of the earthquake sources[J]. Acta Seismologica Sinica,1980,2(2):169–185.(in Chinese))
[41] NIU Y,SU Z,SUN J,et al. Influence of the strength of rock-like models on the local deformation field and acoustic emission characteristics[J]. Bulletin of Engineering Geology and the Environment,2023,82(8):1–18.
[42] 周文东,崔宴伟,王笑然,等. 基于离散元模拟的受载裂隙岩体地震学声发射响应特征[J]. 煤炭科学技术,2024,52(10):54–62. (ZHOU Wendong,CUI Yanwei,WANG Xiaoran,et al. Characteristics of seismic acoustic emission of loaded rock containing pre-existing cracks based on the discrete element simulation[J]. Coal Science and Technology,2024,52(10):54–62.(in Chinese))
[43] 秦长源. 地震震级误差对b值的影响[J]. 地震学报,2000,22(4):337–344.(QIN Changyuan. The effect of the magnitude uncertainty on the b value[J]. Acta Seismologica Sinica,2000,22(4):337–344.(in Chinese))
[44] 杨百存,秦四清,薛 雷,等. 锁固段损伤过程中的能量转化与分配原理[J]. 东北大学学报:自然科学版,2020,41(7):975–981. (YANG Baicun,QIN Siqing,XUE Lei,et al. Energy conversion and allocation principle during the damage process of locked segment [J]. Journal of Northeastern University:Natural Science,2020,41(7):975–981.(in Chinese))
[45] 杜异军,马 瑾. “ ”字式断层声发射b值及震级–频度关系的物理意义[J]. 地震地质,1986,8(2):1–20.(DU Yijun,MA Jin. The b-value of acoustic emission for the sample with“ ”pattern cracks and the physical significance of the frequence-magnitude relation[J]. Seismology and Geology,1986,8(2):1–20.(in Chinese))
[46] BUFE C G,VARNES D J. Predictive modeling of the seismic cycle of the greater San Francisco Bay region[J]. Journal of Geophysical Research:Solid Earth,1993,98(B6):9 871–9 883.
[47] 杨百存,秦四清,薛 雷,等. 断层锁固段累积Benioff应变与剪切应变的等效性[J]. 地球物理学进展,2017,32(3):1 067–1 070. (YANG Baicun,QIN Siqing,XUE Lei,et al. On the equivalence between the cumulative Benioff strain and the shear strain for the locked patches along a seismogenic fault system[J]. Progress in Geophysics,2017,32(3):1 067–1 070.(in Chinese))
[48] 刘力强,马 瑾,雷兴林,等. 岩石构造对声发射统计特征的影响[J]. 地震地质,1999,21(4):377–386.(LIU Liqiang,MA Jin,LEI Xinglin,et al. Effect of rock structure on statistic characteristics of acoustic emission[J]. Seismology and Geology,1999,21(4):377–386.(in Chinese))
[49] 李仲奎,徐千军,罗光福,等. 大型地下水电站厂房洞群三维地质力学模型试验[J]. 水利学报,2002,29(5):31–36.(LI Zhongkui,XU Qianjun,LUO Guangfu,et al. 3D geo-mechanical model test for large scaled underground hydropower station[J]. Journal of Hydraulic Engineering,2002,29(5):31–36.(in Chinese))
[50] LEI X,SATOH T. Indicators of critical point behavior prior to rock failure inferred from pre-failure damage[J]. Tectonophysics,2007,431(1/4):97–111.