Evaluation method for CO2 sealing integrity in shale formations based on combined weighting and 3D modeling
YU Xingchuan1, SHI Xiangchao1, LIU Jianfeng2, GAO Leiyu1, 3, FAN Cunhui1, ZHOU Xiaoli1
(1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China; 2. College of Water Resources and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China;
3. Production Technology Institute, Daqing Oil Field Company Limited, Daqing, Heilongjiang 163000, China)
Abstract:Existing static sealing evaluation methods exhibit limited applicability to heterogeneous shale formations. To enhance the representativeness and objectivity of evaluation results for the static sealing of CO2 geological storage reservoirs, this study proposes and implements innovative approaches: introducing a three-dimensional heterogeneous model into the traditional evaluation framework; and combining the analytic hierarchy process (AHP) with the entropy weight method (EWM) to establish a comprehensive weighting strategy that minimizes the impact of subjective bias. The research findings indicate that: (1) the evaluation results based on the heterogeneous model (5.84–9.95 points) demonstrate that the sealing performance in most areas of the reservoir meets storage requirements, although there exists a localized leakage risk, effectively addressing the issues of inadequate characterization and overly optimistic outcomes associated with homogeneous models; and (2) the average consistency of the weight coefficients for the primary influencing factors, calculated using AHP and EWM, reaches 83.3%, confirming the effectiveness of the comprehensive weighting strategy in mitigating subjective interference. This method significantly enhances the credibility of static sealing evaluations, providing an efficient and theoretically robust evaluation framework for CO2 geological storage projects.
于兴川1,石祥超1,刘建锋2,高雷雨1,3,范存辉1,周小力1. 基于组合赋权与三维建模的页岩地层CO2封存密封性评价方法[J]. 岩石力学与工程学报, 2025, 44(11): 3011-3023.
YU Xingchuan1, SHI Xiangchao1, LIU Jianfeng2, GAO Leiyu1, 3, FAN Cunhui1, ZHOU Xiaoli1. Evaluation method for CO2 sealing integrity in shale formations based on combined weighting and 3D modeling. , 2025, 44(11): 3011-3023.
[1] CHEN B,LI Q,TAN Y S,et al. Key indicators of caprock sealing assessment with consideration of faults in potential CO2 geological storage sites in Subei Basin,China[J]. Gas Science and Engineering,2024,129:205414.
[2] YE J,AFIFI A,ROWAIHY F,et al. Evaluation of geological CO2 storage potential in Saudi Arabian sedimentary basins[J]. Earth- Science Reviews,2023,244:104539.
[3] LIU H,RAO X,XIONG H. Evaluation of CO2 sequestration capacity in complex-boundary-shape shale gas reservoirs using projection- based embedded discrete fracture model(pEDFM)[J]. Fuel,2020, 277:118201.
[4] UMAR B A,GHOLAMI R,NAYAK P,et al. Regional and field assessments of potentials for geological storage of CO2:A case study of the Niger Delta Basin,Nigeria[J]. Journal of Natural Gas Science and Engineering,2020,77:103195.
[5] TANG C,ZHOU W,CHEN Z X,et al. Numerical simulation of CO2 sequestration in shale gas reservoirs at reservoir scale coupled with enhanced gas recovery[J]. Energy,2023,277:127657.
[6] SUI H G,ZHANG F Y,ZHANG L,et al. Mechanism of CO2 enhanced oil recovery in kerogen pores and CO2 sequestration in shale:A molecular dynamics simulation study[J]. Fuel,2023,349:128692.
[7] RAHMAN M J,FAWAD M,JAHREN J,et al. Top seal assessment of Drake Formation shales for CO2 storage in the Horda Platform area,offshore Norway[J]. International Journal of Greenhouse Gas Control,2022,119:103700.
[8] HOU L H,YU Z C,LUO X,et al. Self-sealing of caprocks during CO2 geological sequestration[J]. Energy,2022,252:124064.
[9] BAN S N,LIU H J,WEI X X,et al. The application of the fuzzy comprehensive evaluation method in the sealing evaluation of caprocks in underground gas storage[J]. Applied Sciences,2023,13(17):9753.
[10] ZHAO S,LIU H,ZHU Y F,et al. Quantitative evaluation of Gypsum-Salt caprock sealing capacity based on analytic hierarchy process—A case study from the Cambrian in the Tarim Basin,Western China[J]. Energies,2022,15(19):7139.
[11] BAI B,HU Q F,LI Z P,et al. Evaluating the sealing effectiveness of a caprock-fault System for CO2 -EOR storage:A case study of the Shengli Oilfield[J]. Geofluids,2017,2017:8536724.
[12] 井文君,杨春和,李银平,等. 基于层次分析法的盐穴储气库选址评价方法研究[J]. 岩土力学,2012,33(9):2 683–2 690.(JING Wenjun,YANG Chunhe,LI Yinping,et al. Research on site selection evaluation method of salt cavern gas storage with analytic hierarchy process[J]. Rock and Soil Mechanics,2012,33(9):2 683–2 690.(in Chinese))
[13] 苏 欣,赵宏涛,袁宗明,等. 基于模糊综合评判法的地下储气库方案优选[J]. 石油学报,2006,27(2):125–129.(SU Xin,ZHAO Hongtao,YUAN Zongming,et al. Optimum method for underground gas storage projects based on fuzzy comprehensive evaluation[J]. Acta Petrolei Sinica,2006,27(2):125–129.(in Chinese))
[14] 朱子恒,任众鑫,王照周,等. 苏北盆地刘庄储气库密封性评价研究[J]. 油气藏评价与开发,2024,14(5):805–813.(ZHU Ziheng,REN Zhongxin,WANG Zhaozhou,et al. Sealing evaluation of Liuzhuang UGS in Subei Basin[J]. Reservoir Evaluation and Development,2024,14(5):805–813.(in Chinese))
[15] WANG F W,CHEN D X,WANG Q C,et al. Quantitative evaluation of caprock sealing controlled by fault activity and hydrocarbon accumulation response:K gasfield in the Xihu Depression,East China Sea Basin[J]. Marine and Petroleum Geology,2021,134:105352.
[16] 曾大乾,胡宗全,糜利栋,等. 不同类型地下储气库库址评价标准体系及筛选平台[J]. 天然气工业,2022,42:117–124.(ZENG Daqian,HU Zongquan,MI Lidong,et al. Evaluation standard system and screening platform for different types of underground gas storage sites[J]. Natural Gas Industry,2022,42:117–124.(in Chinese))
[17] 曾大乾,张广权,杨小松,等. 复杂油气藏型地下储气库气藏工程关键参数设计方法[J]. 天然气工业,2023,43(10):24–33.(ZENG Daqian,ZHANG Guangquan,YANG Xiaosong,et al. Design method of key parameters of gas reservoir engineering for complex reservoir type underground gas storages[J]. Natural Gas Industry,2023,43(10):24–33.(in Chinese))
[18] 贾善坡,金凤鸣,郑得文,等. 含水层储气库的选址评价指标和分级标准及可拓综合判别方法研究[J]. 岩石力学与工程学报,2015,34(8):1 628–1 640.(JIA Shanpo,JIN Fengming,ZHENG Dewen,et al. Evaluation indices and classification criterion of aquifer site for gas storage[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(8):1 628–1 640.(in Chinese))
[19] 贾善坡,张 玥,温曹轩,等. 含水层地下储氢圈闭盖层密封性评价——以Y含水圈闭为例[J]. 西北大学学报:自然科学版,2024,54(4):729–740.(JIA Shanpo,ZHANG Yue,WEN Caoxuan,et al. The sealing evaluation of underground hydrogen storage cap rock in aquifer:Taking Y water-bearing trap as an example[J]. Journal of Northwest University:Natural Science,2024,54(4):729–740.(in Chinese))
[20] 金凤鸣,贾善坡,张 辉,等. 京津冀地区断陷盆地含水层储气库评价体系及目标优选[J]. 天然气地球科学,2017,28(9):1 433– 1 445.(JIN Fengming,JIA Shanpo,ZHANG Hui,et al. Evaluation system and optimization of aquifer exploration targets for gas storage in the Beijing,Tianjin and Hebei faulted basins[J]. Natural Gas Geoscience,2017,28(9):1 433–1 445.(in Chinese))
[21] SAATY R W. The analytic hierarchy process-what and how it is used[J]. Mathematical Modelling,1987,9(3):161–176.
[22] 王 鹏,谢 丹,罗乃菲. 长宁地区页岩气地质特征与勘探开发前景[J]. 宜宾学院学报,2020,20(12):10–15.(WANG Peng,XIE Dan,LUO Naifei. Geological characteristics of shale gas and prospects for exploration and development in Changning Area[J]. Journal of Yibin University,2020,20(12):10–15.(in Chinese))
[23] 韩 倩. 川南长宁背斜构造几何学特征及形成演化[硕士学位论文][D]. 成都:成都理工大学,2020.(HAN Qian. Geometry and evolution of Changning anticline in southern Sichuan[M. S. Thesis][D]. Chengdu:Chengdu University of Technology,2020.(in Chinese))
[24] 张浩淼. 长宁区块上奥陶统五峰组—下志留统龙马溪组页岩气地质特征研究[硕士学位论文][D]. 成都:西南石油大学,2017. (ZHANG Haomiao. Study on shale gas geological characteristics of Upper Ordovician Wufeng Formation—Lower Silurian Longmaxi Formation in Changning block[M. S. Thesis][D]. Chengdu:Southwest Petroleum University,2017.(in Chinese))
[25] 单玄龙,邢 健,苏思远,等. 川南长宁地区下古生界五峰组—龙马溪组一段页岩岩相与含气性特征[J]. 吉林大学学报:地球科学版,2023,53(5):1 323–1 337.(SHAN Xuanlong,XING Jian,SU Siyuan,et al. Shale lithofacies and gas-bearing characteristics of the Lower Paleozoic Wufeng Formation—Member 1 of Longmaxi Formation in Changning Area,Southern Sichuan[J]. Journal of Jilin University:Earth Science,2023,53(5):1 323–1 337.(in Chinese))
[26] 公子龙,李智武,李金玺,等. 川南长宁地区构造变形特征及演化过程[J]. 成都理工大学学报:自然科学版,2023,50(3):257–267. (GONG Zilong,LI Zhiwu,LI Jinxi,et al. Tectonic deformation characteristics and evolution process in Changning area,Southern Sichuan Province,China[J]. Journal of Chengdu University of Technology:Science and Technology,2023,50(3):257–267.(in Chinese))
[27] LAI X P,CHEN X Y,WANG Y H,et al. Feasibility analyses and prospects of CO2 geological storage by using abandoned shale gas wells in the Sichuan Basin,China[J]. Atmosphere,2022,13:1698.
[28] HO W. Integrated analytic hierarchy process and its applications—A literature review[J]. European Journal of Operational Research,2008,186(1):211–228.
[29] 何 堃. 层次分析法的标度研究[J]. 系统工程理论与实践,1997,(6):58–62.(HE Kun. A study on the scale of analytic hierarchy process[J]. Systems Engineering—Theory and Practice,1997,(6):58–62.(in Chinese))
[30] 段怡青,解智强,林美娜,等. 基于指数标度AHP的地下空间开发适宜性评价[J]. 地下空间与工程学报,2021,17(增1):8–15. (DUAN Yiqing,XIE Zhiqiang,LIN Meina,et al. Suitability evaluation of underground space development based on index scale- AHP[J]. Chinese Journal of Underground Space and Engineering,2021,17(Supp.1):8–15.(in Chinese))
[31] 闫 铁,许 瑞,孙文峰,等. 地层抗钻能力相似性评价及钻头选型新方法[J]. 石油勘探与开发,2021,48(2):386–393.(YAN Tie,XU Rui,SUN Wenfeng,et al. Similarity evaluation of stratum anti- drilling ability and a new method of drill bit selection[J]. Petroleum Exploration and Development,2021,48(2):386–393.(in Chinese))
[32] 侯恩科,纪卓辰,车晓阳,等. 基于改进AHP和熵权法耦合的风化基岩富水性预测方法[J]. 煤炭学报,2019,44(10):3 164–3 173. (HOU Enke,JI Zhuochen,CHE Xiaoyang,et al. Water abundance prediction method of weathered bedrock based on improved AHP and the entropy weight method[J]. Journal of China Coal Society,2019,44(10):3 164–3 173.(in Chinese))
[33] 吕延防,张绍臣,王亚明. 盖层封闭能力与盖层厚度的定量关系[J]. 石油学报,2000,21(2):27–30.(LV Yanfang,ZHANG Shaochen,WANG Yaming. Research of quantitative relations between sealing ability and thickness of cap rock[J]. Acta Petrolei Sinica,2000,21(2):27–30.(in Chinese))
[34] 王 欢,王 琪,张功成,等. 琼东南盆地梅山组泥岩盖层封闭性综合评价[J]. 地球科学与环境学报,2011,33(2):152–158.(WANG Huan,WANG Qi,ZHANG Gongcheng,et al. Comprehensive evaluation on the sealing ability of mudstone caprock in Meishan Formation of Qiongdongnan Basin[J]. Journal of Earch Sciences and Environment,2011,33(2):152–158.(in Chinese))
[35] 刘 杰. 基于多点地质统计学的储层建模方法研究[硕士学位论文][D]. 北京:中国石油大学(北京),2020.(LIU Jie. Research on reservoir modeling method based on multi-point geostatistics[M. S. Thesis][D]. Beijing:China University of Petroleum(Beijing),2020.(in Chinese))
[36] 张 超,姚 杰,李伟娜,等. 塔里木盆地东河储气库盖层密封性定量评价[J]. 大庆石油地质与开发,2025,44(3):93–102.(ZHANG Chao,YAO Jie,LI Weina,et al. Quantitative evaluation on caprock sealing performance of Donghe gas storage of Tarim Basin[J]. Petroleum Geology and Oilfield Development in Daqing,2025,44(3):93–102.(in Chinese))
[37] JIN Z J,YUAN Y S,SUN D S,et al. Models for dynamic evaluation of mudstone/shale cap rocks and their applications in the Lower Paleozoic sequences,Sichuan Basin,SW China[J]. Marine and Petroleum Geology,2014,49:121–128.