Experimental investigation on temperature control of surrounding rock-lining of tunnel in cold region based on phase change energy storage
LIU Hui1, YANG Gengshe1, SHEN Yanjun2, 3, YE Wanjun1, DING Xiao4, HAN Senlei1, LIANG Bo1, DAI Xinyue1, JIA Hailiang1
(1. College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi?an, Shaanxi 710054, China;
2. College of Geological Engineering and Geomatics, Chang?an University, Xi?an, Shaanxi 710054, China; 3. State Key Laboratory of Loess Science, Chang?an University, Xi?an, Shaanxi 710054, China; 4. School of Civil and Architecture Engineering, Xi?an Technological University, Xi?an, Shaanxi 710021, China)
Abstract:Maintaining surrounding rock thermal insulation is crucial for preventing frost damage in cold-region tunnel engineering. Active thermal balance preservation in surrounding rock holds critical importance for frost damage prevention in cold-region tunnels. This study proposes the approach of frost damage prevention by phase change energy storage practively. The temperature control system for tunnel surrounding rocks was established using phase change materials (PCMs), developing phase-field model for cold-storage heat-retention PCMs and deriving mathematical equations for solid-liquid phase transition alongside an optimal phase change temperature calculation formula. Following the principles of maximum latent heat and prolonged phase change duration, PCM material suitable for cold-region tunnel engineering was developed. Experimental investigations were conducted to evaluate the thermal properties, durability, and temperature regulation performance of cold-storage heat-retention PCMs under freeze-thaw conditions. Tests revealed that: (1) The developed PCMs, composed of decanoic acid and decanol in a mass ratio of 55.39∶107.38 with latent heat of 231.17 J/g, exhibiting superior heat storage performance among low-temperature phase change materials. (2) DSC and temperature scanning tests on cold-storage heat-retention PCMs revealed single-peak exothermic/endothermic curves during freeze-thaw cycles, confirming stable eutectic formation and consistent thermal storage performance. The prolonged heat storage/release phases demonstrated significant peak-shaving and valley-filling effects, effectively mitigating frost heave and thawing-induced damage in cold region engineering. (3) After 300 phase-change cycles, the FTIR spectral profiles and DSC curves remained consistent. The developed PCMs demonstrate maximum phase transition temperature deviation of 0.08 ℃, latent heat variation <5%, and super-cooling degree <5 ℃, confirming excellent thermal cycling stability and durability. (4) The temperature control efficacy of PCMs is influenced by temperature gradient. Ensuring the full utilization of phase change materials is the key to maximizing its phase change potential in freeze-thaw environments. Therefore, appropriate PCMs thickness selection based on local climate conditions proves essential for temperature regulation. The relevant research results provide valuable theoretical insights and practical guidance for the development of frost damage prevention and thermal insulation technologies in cold region tunnel engineering.
刘 慧1,杨更社1,申艳军2,3,叶万军1,丁 潇4,韩森磊1,梁 博1,戴昕悦1,贾海梁1. 基于相变蓄能的寒区隧道围岩–衬砌控温试验研究[J]. 岩石力学与工程学报, 2025, 44(7): 1752-1766.
LIU Hui1, YANG Gengshe1, SHEN Yanjun2, 3, YE Wanjun1, DING Xiao4, HAN Senlei1, LIANG Bo1, DAI Xinyue1, JIA Hailiang1. Experimental investigation on temperature control of surrounding rock-lining of tunnel in cold region based on phase change energy storage. , 2025, 44(7): 1752-1766.
马 巍,牛富俊,穆彦虎,等. 青藏高原重大冻土工程的基础研究[J]. 地球科学展,2012,27(11):1 185-1 191.(MA Wei,NIU Fujun,MU Yanhu,et al. Basic research on the major permafrost projects in the Qinghai—Xizang plateau[J]. Advances in Earth Science,2012,27(11):1 185-1 191.(in Chinese))
[2]
ZHAO X,YANG X H,ZHANG H W,et al. An analytical solution for frost heave force by the multifactor of coupled heat and moisture transfer in cold-region tunnels[J]. Cold Regions Science and Technology,2020,175:103077-1-10.
[3]
薛翊国,孔凡猛,杨为民,等. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报,2020,39(3):446-467.(XUE Yiguo,KONG Fanmeng,YANG Weimin,et al. Main unfavorable geological conditions and engineering geological problems along Sichuan—Xizang railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(3):446-467.(in Chinese))
[4]
郑 波,吴 剑,袁 明,等. 川西高海拔隧道洞内气温特征及抗防冻理念探讨[J]. 隧道建设(中英文),2024,44(9):1 771-1 781. (ZHENG Bo,WU Jian,YUAN Ming,et al. Temperature characteristics and anti-freezing concepts of high-altitude tunnels in Western Sichuan plateau,China[J]. Tunnel Construction,2024,44(9):1 771-1 781.(in Chinese))
[5]
何鹏飞,马 巍,穆彦虎,等. 冻融循环对冻土-混凝土界面冻结强度影响的试验研究[J]. 岩土工程学报,2020,42(2):299-307.(HE Pengfei,MA Wei,MU Yanhu,et al. Experiment study on effects of freeze-thaw cycles on adfreezing strength at frozen soil-concrete interface[J]. Chinese Journal of Geotechnical Engineering,2020,42(2):299-307.(in Chinese))
[6]
刘 杰,奚家米,贾海梁,等. 冻融作用下岩石-混凝土界面损伤研究进展[J]. 低温建筑技术,2022,44(4):25-29.(LIU Jie,XI Jiami,JIA Hailiang,et al. Research progress on damage of rock-concrete interface under freeze-thaw action[J]. Low Temperature Architecture Technology,2022,44(4):25-29.(in Chinese))
[7]
SHEN Y J,WANG Y Z,YANG Y,et al. Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface[J]. Construction and Building Materials,2019,213:156-166.
[8]
谭贤君,陈卫忠,于洪丹,等. 考虑通风影响的寒区隧道围岩温度场及防寒保温材料敷设长度研究[J]. 岩石力学与工程学报,2013,32(7):1 400-1 409.(TAN Xianjun,CHEN Weizhong,YU Hongdan,et al. Study of temperature field of tunnel surrounding rock in cold regions considering effect of ventilation and length design of insulation material[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(7):1 400-1 409.(in Chinese))
[9]
高 焱,朱永全,赵东平,等. 隧道寒区划分建议及保温排水技术研究[J]. 岩石力学与工程学报,2018,37(增1):3 489-3 499.(GAO Yan,ZHU Yongquan,ZHAO Dongping,et al. Study on classified suggestion of tunnel in cold region and thermal insulation-considered drainage technology[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(Supp.1):3 489-3 499.(in Chinese))
[10]
赖远明,吴紫汪,张淑娟,等. 寒区隧道保温效果的现场观察研究[J]. 铁道学报,2003,25(1):81-86.(LAl Yuanming,WU Ziwang,ZHANG Shujuan,et al. ln-situ observed study for effect of heat pres-creation in cold regions[J]. Journal of the China Railway Society,2003,25(1):81-86.(in Chinese))
[11]
谭贤君,陈卫忠,王 辉,等. 寒区隧道二衬混凝土冬季施工温控技术研究[J]. 岩石力学与工程学报,2013,32(1):150-160.(TAN Xianjun,CHEN Weizhong,WANG Hui,et al. Research on temperature control technology for winter construction of tunnel concrete lining in cold regions[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(1):150-160.(in Chinese))
[12]
陈 颖,姜庆辉,辛集武,等. 相变储能材料及其应用研究进展[J]. 材料工程,2019,47(7):1-10.(CHEN Ying,JIANG Qinghui,XIN Jiwu,et al. Research status and application of phase change materials[J]. Journal of Materials Engineering,2019,47(7):1-10.(in Chinese))
[13]
桂鹏策,胡思前,汪海平. 相变储能材料及其在温控领域中的应用[J]. 现代化工,2020,40(10):75-79.(GUI Pengce,HU Siqian,WANG Haiping. Phase change energy storage materials and their application in temperature control field[J]. Modern Chemical Industry,2020,40(10):75-79.(in Chinese))
[14]
成鑫磊,穆 锐,孙 涛,等. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报,2024,38(5):73-87.(CHENG Xinlei,MU Rui,SUN Tao,et al. Incorporation technique and preparation process of solid liquid phase change material and its research progress in construction field[J]. Materials Report,2024,38(5):73-87.(in Chinese))
[15]
周世强,Razaqpur Abdul Ghani. 新型动态保温相变Trombe墙体热性能的实验研究[J]. 太阳能学报,2024,45(2):10-15.(ZHOU Shiqiang,Razaqpur Abdul Ghani. Experimental study of thermal performance of new dynamic thermal insulated pcm trombe wall[J]. Acta Energiae Solaris Sinica,2024,45(2):10-15.(in Chinese))
[16]
史 巍. 相变控温材料在土木工程中的应用[M]. 北京:科学出版社,2020:1-6.(SHI Wei. Application of phase change temperature control materials in civil engineering[M]. Beijing:Science Press,2020:1-6.(in Chinese))
[17]
ZHANG Y,HUANG J,FANG X,et al. Optimal roof structure with multilayer cooling function materials for building energy saving[J]. International Journal of Energy Research,2020,44(3):1 594-1 606.
[18]
LV S,FENG G,ZHU N,et al. Experimental study and evaluation of latent heat storage in phase change materials wallboards[J]. Energy and Buildings,2007,39(10):1 088-1 091.
[19]
杨献章,胡柏学,廖春芳,等. 相变控温技术在桥梁防冻工程的应用[J]. 公路工程,2013,38(1):1-4.(YANG Xianzhang,HU Baixue,LIAO Chunfang,et al. Application of phase-change temperature control technique in bridge antifreeze engineering[J]. Highway Engineering,2013,38(1):1-4.(in Chinese))
[20]
华旭明. 组合相变材料在夏热冬冷地区建筑围护结构的传热性能研究及能耗分析[硕士学位论文][D]. 上海:东华大学,2017.(HUA Xuming .Research on heat transfer performance and energy analysis of combined phase change in building envelope in four distinctive season district[M. S. Thesis][D]. Shanghai:Donghua University,2017.(in Chinese))
[21]
孙铭锴. 西北大温差地区PEG漂珠相变储能沥青砼控温及路用性能的试验研究[硕士学位论文][D]. 兰州:兰州交通大学,2021.(SUN Mingkai. Experimental study on temperature control and road performance of PEG floating bead phase change energy storage asphalt concrete in northwest large temperature difference area[M. S. Thesis][D]. Lanzhou:Lanzhou Jiaotong University,2021.(in Chinese))
[22]
袁艳平,向 波,曹晓玲,等. 建筑相变储能技术研究现状与发展[J]. 西南交通大学学报,2016,51(3):585-598.(YUAN Yanping,XIANG Bo,CAO Xiaoling,et al. Research status and development on latent energy storage technology of building[J]. Journal of Southwest Jiaotong University,2016,51(3):585-598.(in Chinese))
[23]
王 畅,曹晓玲,袁艳平,等. 夏季间歇运行工况下相变温度对相变回填地埋管换热器传热性能的影响[J]. 太阳能学报,2020,41(3):234-241.(WANG Chang,CAO Xiaoling,YUAN Yanping,et al. The effect of phase change temperature on the heat transfer performance of phase change backfill ground heat exchanger under intermittent operation in summer[J]. Journal of Solar Energy,2020,41(3):234-241.(in Chinese))
[24]
李京卫,唐志伟,王 昊,等. 低温相变蓄热材料性能研究及在移动蓄热装置中应用[J]. 化工进展,2021,40(增1):163-167.(LI Jingwei,TANG Zhiwei,WANG Hao,et al. Properties of low temperature phase change heat storage materials and their applications in mobile heat storage devices[J]. Chemical Industry and Engineering Progress,2021,40(Supp.1):163-167.(in Chinese))
[25]
KLIMES L,CHARVAT P,OSTRY M. Thermally activated wall panels with microencapsulated PCM:comparison of 1D and 3D models[J]. Journal of Building Performance Simulation,2019,12(4):404-419.
[26]
RYMS M,KLUGMANN-RADZIEMSKA E. Possibilities and benefits of a new method of modifying conventional building materials with phase-change materials(PCMs)[J]. Construction and Building Materials,2019,211:1 013-1 024.
[27]
SAXENA R,RAKSHIT D,KAUSHIK S C. Phase change material(PCM) incorporated bricks for energy conservation in composite climate:A sustainable building solution[J]. Solar Energy,2019,183:276-284.
[28]
ZHAO J,YUAN Y,HAGHIGHAT F,et al. Investigation of energy performance and operational schemes of a Xizang-focused PCM-integrated solar heating system employing a dynamic energy simulation model[J]. Energy,2019,172:141-154.
[29]
张 源,魏燕丽,许锦峰. 相变蓄能墙板基本构造的热工分析[J]. 江苏大学学报:自然科学版,2022,43(2):224-229.(ZHANG Yuan,WEI Yanli,XU Jinfeng. Thermal analysis on basic configuration of phase transition energy storage wallboards[J]. Journal of Jiangsu University:Natural Science,2022,43(2):224-229.(in Chinese))
[30]
王子正. 隧道相变注浆浆液的制备及其工作性能研究[硕士学位论文] [D]. 郑州:河南工业大学,2024.(WANG Zizheng. Preparation and working performance of phase change grouting slurry for tunnels[M. S. Thesis][D]. Zhengzhou:Henan University of Technology,2024.(in Chinese))
[31]
吴元昊,张国柱,操子明,等. 隧道相变蓄冷降温技术[J].现代隧道技术,2023,60(6):80-90.(WU Yuanhao,ZHANG Guozhu,CAO Ziming,et al. Phase change cold storage and cooling technology for tunnels[J]. Modern Tunnelling Technology,2023,60(6):80-90.(in Chinese))
[32]
赵 耀. 相变材料及梯级系统传热储热特性的理论与实验研究[博士学位论文][D]. 上海:上海交通大学,2018.(ZHAO Yao. Theoretical and Experimental Study on the Heat Transfer and Storage Characteristics of Phase Change Materials and Cascaded Systems[Ph. D. Thesis][D]. Shanghai:Shanghai Jiaotong University,2018.(in Chinese))
[33]
张 雪,刘圣春,徐智明. 固液相变影响因素及应用研究综述[J]. 冷藏技术,2021,44(1):45-51.(ZHANG Xue,LIU Shengchun,XU Zhiming. A review on influencing factors and application of solid-liquid phase transformation[J]. Journal of Refrigeration Technology,2021,44(1):45-51.(in Chinese))
[34]
折晓会,王星宇,郭晓龙,等. 超低温-高温跨温区相变材料制备及物性调控综述[J]. 储能科学与技术,2023,12(12):3 818-3 835. (SHE Xiaohui,WANG Xingyu,GUO Xiaolong,et al. A review on the preparation of ultra-low-temperature,high-temperature,and cross-temperature zone phase change materials and the regulation of physical properties[J]. Energy Storage Science and Technology,2023,12(12):3 818-3 835.(in Chinese))
[35]
宋炎林. 十二烷/膨胀石墨定形相变材料蓄冷特性研究[硕士学位论文][D]. 成都:西南交通大学,2019.(SONG Yanlin. Study on Cold Storage Characteristics of Dodecane/EG shape-stabilized Composite Phase Change Material[M. S. Thesis][D]. Chengdu:Southwest Jiaotong University,2019.(in Chinese))