[1] |
QU H,TANG S,LIU Y,et al. Characteristics of complex fractures by liquid nitrogen fracturing in brittle shales[J]. Rock Mechanics and Rock Engineering,2022,55(4):1 807-1 822.
|
[2] |
LIN H,HAN Y,LIANG S,et al. Effects of low temperatures and cryogenic freeze-thaw cycles on concrete mechanical properties:A literature review[J]. Construction and Building Materials,2022,345:128287.
|
[3] |
EVGENIYA KRIVONOS. Stakeholder engagement plan:Arctic LNG2 project-environmental,social and health impact assessment[R]. Moscow:Ramboll CIS/LLC,2021.
|
[4] |
CHA S,BAE G,LEE K,et al. Evaluation of drainage system around a lined pilot cavern for underground cryogenic LNG storage[J]. Tunnelling and underground space technology,2008,23(4):360-372.
|
[5] |
XU L,PEI Z,ZOU Y,et al. China?s lunar and deep space exploration program for the next decade(2020-2030)[J]. Chinese Journal of Space Science,2020,40(5):615-617.
|
[6] |
高朝辉,童科伟,时剑波,等. 载人火星和小行星探测任务初步分析[J]. 深空探测学报,2015,2(1):10-19.(GAO Zhaohui,TONG Kewei,SHI Jianbo,et al. Analysis of the manned mars and asteroid missions[J]. Journal of Deep Space Exploration,2015,2(1):10-19.(in Chinese))
|
[7] |
WANG T,SUN Q,JIA H,et al. Fracture mechanical properties of frozen sandstone at different initial saturation degrees[J]. Rock Mechanics and Rock Engineering,2022,55(6):3 235-3 252.
|
[8] |
贾海梁,王亚彪,魏 尧,等. 基于电阻的冻结砂砾土孔隙冰压融效应研究[J]. 岩土力学,2024,45(8):2 221-2 231.(JIA Hailiang,WANG Yabiao,WEI Yao,et al. A resistivity-based study on the pressure melting of pore ice in frozen gravel soil[J]. Rock and Soil Mechanics,2024,45(8):2 221-2 231.(in Chinese))
|
[9] |
WANG T,SUN Q,JIA H,et al. Linking the mechanical properties of frozen sandstone to phase composition of pore water measured by LF-NMR at subzero temperatures[J]. Bulletin of Engineering Geology and the Environment,2021,80(6):4 501-4 513.
|
[10] |
谭贤君,陈卫忠,贾善坡,等. 含相变低温岩体水热耦合模型研究[J]. 岩石力学与工程学报,2008,27(7):1 455-1 461.(TAN Xianjun,CHEN Weizhong,JIA Shanpo,et al. A coupled hydro-thermal model for low temperature rock including phase change[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(7):1 455-1 461. (in Chinese))
|
[11] |
WANG T,JIA H,SUN Q,et al. Pressure melting of pore ice in frozen rock under compression[J]. Cold Regions Science and Technology,2023,210:103856.
|
[12] |
ZHENG P,TAN X,JIA H,et al. A unified model for frost wedging in an open fissure under unidirectional freezing[J]. International Journal of Rock Mechanics and Mining Sciences,2024,176:105726.
|
[13] |
YANG L,JIA H,HAN L,et al. Hysteresis in the ultrasonic parameters of saturated sandstone during freezing and thawing and correlations with unfrozen water content[J]. Journal of Rock Mechanics and Geotechnical Engineering,2021,13(5):1 078-1 092.
|
[14] |
CHRISTIANSEN H H. Thermal regime of ice‐wedge cracking in Adventdalen,Svalbard[J]. Permafrost and Periglacial Processes,2005,16(1):87-98.
|
[15] |
HALES T C,ROERING J J. Climatic controls on frost cracking and implications for the evolution of bedrock landscapes[J]. Journal of Geophysical Research:Earth Surface,2007,112(F2):F02033.
|
[16] |
ISHIKAWA M,KURASHIGE Y,HIRAKAWA K. Analysis of crack movements observed in an alpine bedrock cliff[J]. Earth Surface Processes and Landforms:the Journal of the British Geomorphological Research Group,2004,29(7):883-891.
|
[17] |
SU Z,TAN X,CHEN W,et al. A model of unfrozen water content in rock during freezing and thawing with experimental validation by nuclear magnetic resonance[J]. Journal of Rock Mechanics and Geotechnical Engineering,2022,14(5):1 545-1 555.
|
[18] |
TAN X,CHEN W,TIAN H,et al. Water flow and heat transport including ice/water phase change in porous media:Numerical simulation and application[J]. Cold Regions Science and Technology,2011,68(1/2):74-84.
|
[19] |
SU Z,MA Y,TAN X,et al. Experimental and theoretical study of the shear strength of ice-rock interface[J]. Cold Regions Science and Technology,2024,218:104076.
|
[20] |
JIA H,LEITH K,KRAUTBLATTER M. Path-dependent frost-wedging experiments in fractured,low-permeability granite[J]. Permafrost and Periglacial Processes,2017,28(4):698-709.
|
[21] |
贾海梁,赵思琪,丁 顺,等. 含水裂隙冻融过程中冻胀力演化及影响因素研究[J]. 岩石力学与工程学报,2022,41(9):1 832-1 845. (JIA Hailiang,ZHAO Siqi,DING Shun,et al. Study on the evolution and influencing factors of frost heaving force of water-bearing cracks during freezing-thawing process[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(9):1 832-1 845.(in Chinese))
|
[22] |
谢 剑,崔 宁,姜晓峰. 混凝土超低温冻融循环损伤机制及控制措施[J]. 硅酸盐通报,2018,37(8):2 367-2 371.(XIE Jian,CUI Ning,JIANG Xiaofeng. Mechanism and improvement of freeze-thaw deterioration of concrete under ultra-low temperature[J]. Bulletin of the Chinese Ceramic Society,2018,37(8):2 367-2 371.(in Chinese))
|
[23] |
贾海梁,项 伟,谭 龙,等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩石力学与工程学报,2016,35(5):879-895.(JIA Hailiang,XIANG Wei,TAN Long,et al. Theoretical analysis and experimental verifications of frost damage mechanism of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(5):879-895.(in Chinese))
|
[24] |
中华人民共和国行业标准编写组. DB11/T 1972—2022城市轨道交通工程冻结法施工技术规范[S]. 北京:中国标准出版社, 2022.(The Professional Standards Compilation Group of People?s Republic of China. DB11/T 1972—2022 Code for freezing method construction in urban rail transit projects[S]. Beijing:Standards Press of China,2022.(in Chinese))
|
[25] |
中华人民共和国行业标准编写组. NB/T 10222—2019隧道联络通道冻结法施工及验收规范[S]. 北京:应急管理出版社,2019.(The Professional Standards Compilation Group of People?s Republic of China. NB/T 10222—2019 Code for freezing method construction and acceptance of tunnel connecting passage[S]. Beijing:China Emergency Management Press,2019.(in Chinese))
|
[26] |
中华人民共和国行业标准编写组. MT/T 1124—2011 煤矿冻结法开凿立井工程技术规范[S]. 北京:煤炭工业出版社,2011.(The Professional Standards Compilation Group of People?s Republic of China. MT/T 1124—2011 Technical code for shaft construction using freezing method in coal mines[S]. Beijing:China Coal Industry Publishing House,2011.(in Chinese))
|
[27] |
中华人民共和国行业标准编写组. JTG 3431—2024公路工程岩石试验规程[S]. 北京:人民交通出版社,2024.(The Professional Standards Compilation Group of People?s Republic of China. JTG 3431—2024 Specifications for rock testing in highway engineering[S]. Beijing:China Communications Press,2024.(in Chinese))
|
[28] |
中华人民共和国行业标准编写组. TB 10115—2023铁路工程岩石试验规程[S]. 北京:中国铁道出版社,2023.(The Professional Standards Compilation Group of People?s Republic of China. TB 10115—2023 Specifications for rock testing in railway engineering[S]. Beijing:China Railway Publishing House,2023.(in Chinese))
|
[29] |
中华人民共和国国家标准编写组. GB/T 51257—2017液化天然气低温管道设计规范[S]. 北京:中国计划出版社,2017.(The National Standards Compilation Group of People?s Republic of China. GB/T 51257—2017 Code for design of low-temperature pipelines for liquefied natural gas[S]. Beijing:China Planning Publishing House,2017.(in Chinese))
|
[30] |
中华人民共和国国家标准编写组. GB/T 16163—2012 瓶装气体分类[S]. 北京:中国标准出版社,2012.(The National Standards Compilation Group of People?s Republic of China. GB/T 16163—2012 Classification of bottled gases[S]. Beijing:Standards Press of China,2012.(in Chinese))
|
[31] |
中华人民共和国国家标准编写组. GB/T 28577—2021冷链物流分类与基本要求[S]. 北京:中国标准出版社,2021.(The National Standards Compilation Group of People?s Republic of China. GB/T 28577—2021 Classification and basic requirements of cold chain logistics[S]. Beijing:Standards Press of China,2021.(in Chinese))
|
[32] |
申艳军,杨更社,荣腾龙,等. 岩石冻融循环试验建议性方案探讨[J]. 岩土工程学报,2016,38(10):1 775-1 782.(SHEN Yanjun,YANG Gengshe,RONG Tenglong,et al. Proposed scheme for freeze-thaw cycle tests on rock[J]. Chinese Journal of Geotechnical Engineering,2016,38(10):1 775-1 782.(in Chinese))
|
[33] |
张安阔,修吉军,吴一骁,等. 生物样品低温存储制冷技术研究进展[J]. 上海海洋大学学报,2023,32(6):1 109-1 122.(ZHANG Ankuo,XIU Jijun,WU Yixiao,et al. Research progress in refrigeration technology for cryogenic storage of biological samples[J]. Journal of Shanghai Ocean University,2023,32(6):1 109-1 122.(in Chinese))
|
[34] |
古 乐,王黎钦,李秀娟,等. 超低温环境固体润滑研究的发展现状[J]. 摩擦学学报,2002,22(4):314-320.(GU Le,WANG Liqin,LI Xiujuan,et al. Research status of cryogenic solid lubrication[J]. Tribology,2002,22(4):314-320.(in Chinese))
|
[35] |
SHANG Y H,NIU F J,YUAN K,et al. Thermal and mechanical characteristics of a thermal pile in permafrost regions[J]. Advances in Climate Change Research,2023,14(2):255-266.
|
[36] |
THORBERGSEN E. Back analysis of heat loads on selected thermal storages[C]// Storage of Gases in Rock Caverns:Proceedings of the International Conference on Storage of Gases in Rock Caverns/ Trondheim/26-28 June 1989. Routledge:[s. n.],2022:229.
|
[37] |
GOODALL D C,UTHEIM T,THORBERGSEN E. Back analysis of heat loads on selected thermal storages[M]. London: Routledge,2022:229-236.
|
[38] |
江 杰,邱居涛,陈先枝,等. 人工冻结法在圆砾地层地铁联络通道施工中的应用[J]. 现代隧道技术,2020,57(2):192-197.(JIANG Jie,QIU Jutao,CHEN Xianzhi,et al. Application of artificial freezing method in construction of metro cross passage in gravel stratum[J]. Modern Tunnel Technology,2020,57(2):192-197.(in Chinese))
|
[39] |
杨更社,魏 尧,申艳军,等. 冻结饱和砂岩三轴压缩力学特性及强度预测模型研究[J]. 岩石力学与工程学报,2019,38(4):683-694.(YANG Gengshe,WEI Yao,SHEN Yanjun,et al. Mechanical behavior and strength forecast model of frozen saturated sandstoneunder triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(4):683-694.(in Chinese))
|
[40] |
BLINDHEIM O T,BROCH E,GRØV E. Gas storage in unlined caverns-Norwegian experience over 25 years[J]. Tunnelling and Underground Space Technology,2004,19(4/5):367.
|
[41] |
孙余好,吴亚华,邢鹏飞,等. 软弱富水地层干冰冻结隧道钻爆开挖施工方法[P]. 中国:CN202210492995.2,2024-11-26.(SUN Yuhao,WU Yahua,XING Pengfei,et al. Construction method of drilling and blasting excavation of dry ice frozen tunnel in weak water-rich stratum[P]. China:CN202210492995.2,2024-11-26.(in Chinese))
|
[42] |
秦 伟,秦 松,高 杰,等. 基于冻结法施工的矿井井筒温度-位移场耦合物理模拟实验装置及方法[P]. 中国:CN202110031185.2,2022-03-25.(QIN Wei,QIN Song,GAO Jie,et al. Physical simulation experiment device and method of mine shaft temperature-displacement field coupling based on freezing method construction [P]. China:CN202110031185.2,2022-03-25.(in Chinese))
|
[43] |
PIROUZFAR V,SU C H. Developed liquified ethane production,storage and transportation using optimized liquefaction process:Design,energy optimization,and techno-economic feasibility[J]. Environmental Progress and Sustainable Energy,2025,44(2):e14552.
|
[44] |
TAN H,SUN N,ZHAO Q,et al. An ejector-enhanced re-liquefaction process(EERP) for liquid ethylene vessels[J]. International Journal of Energy Research,2017,41(5):658-672.
|
[45] |
DELAGE P,KARAKOSTAS F,DHEMAIED A,et al. An investigation of the mechanical properties of some Martian regolith simulants with respect to the surface properties at the InSight mission landing site[J]. Space Science Reviews,2017,211(1/4):215.
|
[46] |
杨 平,毛一祥,姚梦威. 盾尾刷更换时液氮冻结温度场及冻结参数影响的数值模拟分析[J]. 隧道建设(中英文),2024,44(1):69-77.(YANG Ping,MAO Yixiang,YAO Mengwei. Numerical simulation analysis of the influence of liquid nitrogen freezing temperature field and freezing parameters on shield tail brush replacement[J]. Tunnel Construction,2024,44(1):69-77.(in Chinese))
|
[47] |
LEE D H,LEE H S,KIM H Y,et al. Measurements and analysis of rock mass responses around a pilot lined rock cavern for LNG underground storage[C]// Eurock 2005:Impact of Human Activity on the Geological Environment. Brno:International Symposium of the International-Society-for-Rock-Mechanics,2005:287-292.
|
[48] |
YANG R,HONG C,HUANG Z,et al. Coal breakage using abrasive liquid nitrogen jet and its implications for coalbed methane recovery[J]. Applied Energy,2019,253:113485.
|
[49] |
RABI A M,RADULOVIC J,BUICK J M. Comprehensive review of liquid air energy storage(LAES) technologies[J]. Energies,2023,16(17):6 216.
|
[50] |
孙泽洲,张有为,陈向东,等. 基于嫦娥四号任务的月球背面浅层月壤温度原位测量[J]. 中国科学:技术科学,2022,52(9):1 447-1 455.(SUN Zezhou,ZHANG Youwei,CHEN Xiangdong,et al. In-situ measurement of shallow lunar regolith temperature on the back of the moon based on the Chang?e-4 mission[J]. China Science:Technical Science,2022,52(9):1 447-1 455.(in Chinese))
|
[51] |
ONI B A,BADE S O,SANNI S E,et al. Underground hydrogen storage in salt caverns:recent advances,modeling approaches,barriers,and future outlook[J]. Journal of Energy Storage,2025,107:114951.
|
[52] |
SIVTSEV A I,ALEKSANDROV A R,PETROV D M. Means to solve the problems of the development of helium resources in eastern siberia[C]// IOP Conference Series:Earth and Environmental Science. [S. l.]:IOP Publishing,2020:042097.
|
[53] |
GUAN M,WANG X,ZHOU Y. Cryogenic temperature dependence of tensile response of NbTi/Cu superconducting composite wires[J]. IEEE Transactions on Applied Superconductivity,2012,22(6):8401106-8401106.
|
[54] |
INADA Y,YOKOTA K. Some studies of low temperature rock strength[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1984,21(3):145-153.
|
[55] |
PARK C,SYNN J H,SHIN H S,et al. Experimental study on the thermal characteristics of rock at low temperatures[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(3):367-386.
|
[56] |
MELLOR M. Phase composition of pore water in cold rocks[M]. [S. l.]:Corps of Engineers,US Army,Cold Regions Research and Engineering Laboratory,1970:39-40
|
[57] |
KURIYAGAWA M,MATSUNAGA I,KINOSHITA N,et al. Rock behavior of underground cavern with the storage of cryogenic liquified gas[C]// ISRM International Symposium-Rockstore. Stockholm:Elsevier,1981:665-671.
|
[58] |
LINDBLOM U E. A conceptual design for compressed hydrogen storage in mined caverns[J]. International Journal of Hydrogen Energy,1985,10(10):667-675.
|
[59] |
JACOBSSON U. Storage for liquified gases in unlined,refrigerated rock caverns[C]//Storage in Excavated Rock Caverns:Rockstore 77. Stockholm:Elsevier,1978:449-458.
|
[60] |
INADA Y,YOKOTA K. Some studies of low temperature rock strength[J] International Journal of Rock Mechanics and Mining Sciences,1984,21(3):145-153.
|
[61] |
REN Z,WANG E,LIU J,et al. Characterization and prediction of compressive strength in ultralow-temperature frozen soil using nuclear magnetic resonance and WOA-ENN model[J]. Transportation Geotechnics,2023,43:101143.
|
[62] |
AOKI K,HIBIYA K,YOSHIDA T. Storage of refrigerated liquefied gases in rock caverns:characteristics of rock under very low temperatures[J]. Tunnelling and Underground Space Technology,1990,5(4):319-325.
|
[63] |
崔江磊. 低温月壤水冰模拟样本静力学特性研究[硕士学位论文][D]. 哈尔滨:哈尔滨工业大学,2022.(CUI Jianglei. Study on static characteristics of low temperature simulation sample of icy lunar regolith[M. S. Thesis][D]. Harbin:Harbin Institute of Technology,2022.(in Chinese))
|
[64] |
DWIVEDI R D,SONI A K,GOEL R K,et al. Fracture toughness of rocks under sub-zero temperature conditions[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(8):1 267-1 275.
|
[65] |
唐明明,王芝银,孙毅力,等. 低温条件下花岗岩力学特性试验研究[J]. 岩石力学与工程学报,2010,29(4):787-794.(TANG Mingming,WANG Zhiyin,SUN Yili,et al. Experimental study of mechanical properties of granite under low temperature[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(4):787-794.(in Chinese))
|
[66] |
CAI C Z,LI G S,HUANG Z W,et al. Experimental study of the effect of liquid nitrogen cooling on rock pore structure[J]. Journal of Natural Gas Science and Engineering,2014,21:507-517.
|
[67] |
QIN L,ZHAI C,LIU S,et al. Failure mechanism of coal after cryogenic freezing with cyclic liquid nitrogen and its influences on coalbed methane exploitation[J]. Energy and Fuels,2016,30(10):8 567-8 578.
|
[68] |
蔡承政,李根生,黄中伟,等. 液氮冻结条件下岩石孔隙结构损伤试验研究[J]. 岩土力学,2014,35(4):965-971.(CAI Chengzheng,LI Gensheng,HUANG Zhongwei,et al. Experiment study of rock porous structure damage under cryogenic nitrogen freezing[J]. Rock and Soil Mechanics,2014,35(4):965-971.(in Chinese))
|
[69] |
CNUDDE V,BOONE M N. High-resolution X-ray computed tomography in geosciences:A review of the current technology and applications[J]. Earth-Science Reviews,2013,123:1-17.
|
[70] |
任韶然,范志坤,张 亮,等. 液氮对煤岩的冷冲击作用机制及试验研究[J]. 岩石力学与工程学报,2013,32(增2):3 790-3 794. (REN Shaoran,FAN Zhikun,ZHANG Liang,et al. Mechanisms and experimental study of thermal-shock effect on coal-rock using liquid nitrogen[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(Supp.2):3 790-3 794.(in Chinese))
|
[71] |
WANG H,PAN J,WANG S,et al. Relationship between macro-fracture density,P-wave velocity,and permeability of coal[J]. Journal of Applied Geophysics,2015,117:111-117.
|
[72] |
郑学林. 页岩超低温诱导裂缝机制研究[博士学位论文][D]. 北京:中国石油大学(北京),2023.(ZHENG Xuelin. Formation mechanism investigation on cryogenic-induced fractures in shale[Ph. D. Thesis][D]. Beijing:China University of Petroleum(Beijing),2023.(in Chinese))
|
[73] |
于恩毅,金爱兵,孙 浩,等. 超低温冻融循环下灰岩抗压强度与孔隙率的演化特征及衰减模型[J]. 矿业研究与开发,2021,41(10):55-60.(YU Enyi,JIN Aibing,SUN Hao,et al. Evolution characteristics and attenuation model of compressive strength and porosity of limestone under ultra-low temperature freeze-thaw cycles[J]. Mining Research and Development,2021,41(10):55-60.(in Chinese))
|
[74] |
张牡丹,王苏然,曾健霜,等. 花岗岩超低温冻融循环后力学特性研究[J]. 上海理工大学学报,2017,39(5):484-489.(ZHANG Mudan,WANG Suran,ZENG Jianshuang,et al. Study on mechanical properties of granite after ultra-low temperature freeze-thaw cycles[J]. Journal of Shanghai University of Science and Technology,2017,39(5):484-489.(in Chinese))
|
[75] |
吕敦波,张 帆,张益峰,等. -160 ℃超低温冻融循环后花岗岩三点弯曲试验研究[J]. 冰川冻土,2022,44(6):1 796-1 806.(LV Dunbo,ZHANG Fan,ZHANG Yifeng,et al. Experimental study on three-point bending of granite after cryogenic freeze-thaw cycles at -160 ℃[J]. Journal of Glaciology and Geocryology,2022,44(6):1 796-1 806.(in Chinese))
|
[76] |
HOU P,SU S,GAO F,et al. Influence of liquid nitrogen freeze-thaw cycles on mechanical behaviors and permeability properties of coal under different confining pressures[J]. Rock Mechanics and Rock Engineering,2024,57(4):2 625-2 644.
|
[77] |
WANNE T,YOUNG R. Bonded-particle modeling of thermally fractured granite[J]. International Journal of Rock mechanics and mining Sciences,2008,45(5):789-799.
|
[78] |
曹 钰,郤保平,赵璐敏,等. 液氮深冷冲击作用下岩石传热规律试验研究[J]. 太原理工大学学报,2022,53(6):1 014-1 023.(CAO Yu,XI Baoping,ZHAO Lumin,et al. Experimental study on rock heat transfer under cryogenic impact of liquid nitrogen[J]. Journal of Taiyuan University of Technology,2022,53(6):1 014-1 023.(in Chinese))
|
[79] |
SUNDBERG J,BACK P,CHRISTIANSSON R,et al. Modelling of thermal rock mass properties at the potential sites of a Swedish nuclear waste repository[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(6):1 042-1 054.
|
[80] |
赵 波. 超低温环境下致密岩石孔隙力学特性研究及应用[博士学位论文] [D]. 北京:中国石油大学(北京),2019.(ZHAO Bo. Research and application of pore-related mechanical propertiesof tight rocks at ultra-low temperature[Ph. D. Thesis][D]. Beijing:China University of Petroleum(Beijing),2019.(in Chinese))
|
[81] |
NESPOLI M,YU H,RINALDI A P,et al. Applications and future developments of the(thermo-) poro-elastic theory in geophysics[J]. Earth-Science Reviews,2024,260:104996.
|
[82] |
唐世斌,罗 江,唐春安. 低温诱发岩石破裂的理论与数值模拟研究[J]. 岩石力学与工程学报,2018,37(7):1 596-1 607.(TANG Shibin,LUO Jiang,TANG Chun?an. Theoretical and numerical study on the cryogenic fracturing in rock[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(7):1 596-1 607.(in Chinese))
|
[83] |
左建平,满 轲,曹 浩,等. 热力耦合作用下岩石流变模型的本构研究[J]. 岩石力学与工程学报,2008,27(增1):2 610-2 616. (ZUO Jianping,MAN Ke,CAO Hao,et al. Study on constitutive equation of rock rheological model with thermo-mechanical coupling effects[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(Supp.1):2 610-2 616.(in Chinese))
|
[84] |
郤保平,赵阳升,万志军,等. 热力耦合作用下花岗岩流变模型的本构关系研究[J]. 岩石力学与工程学报,2009,28(5):956-967.(XI Baoping,ZHAO Yangsheng,WAN Zhijun,et al. Study of constitutive equation of granite rheological model with thermo-mechanical coupling effects[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(5):956-967.(in Chinese))
|
[85] |
武晋文,赵阳升,万志军,等. 热力耦合作用鲁灰花岗岩蠕变声发射规律[J]. 岩石力学与工程学报,2012,31(增1):3 061-3 067.(WU Jinwen,ZHAO Yangsheng,WAN Zhijun,et al. Creep acoustic emission rule of gray granite from shandong province with thermo-mechanical coupling effects[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(Supp.1):3 061-3 067.(in Chinese))
|
[86] |
徐 彬. 大型低温液化天然气(LNG)地下储气库裂隙围岩的热力耦合断裂损伤分析研究[博士学位论文][D]. 西安:西安理工大学,2008.(XU Bin. Research on thermo-mechanical coupling damage behavior in jointed rock surrounding large-scale rock cavern for refrigerated LNG(liquided natural gas) storage[Ph. D. Thesis][D]. Xi?an:Xi?an University of Technology,2008.(in Chinese))
|
[87] |
谭贤君. 高海拔寒区隧道冻胀机制及其保温技术研究[博士学位论文][D]. 武汉:中国科学院武汉岩土力学研究所,2010.(TAN Xianjun. Study on the mechanism of frost heave of tunnel in cold region with high altitude and related insulation technology[Ph. D. Thesis][D]. Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,2010.(in Chinese))
|
[88] |
SUN L,TANG X,ABOAYANAH K R,et al. A coupled cryogenic thermo-hydro-mechanical model for frozen medium:Theory and implementation in FDEM[J]. Journal of Rock Mechanics and Geotechnical Engineering,2024,16(11):4 335-4 353.
|
[89] |
HUANG S,LIU Q,CHENG A,et al. A fully coupled thermo-hydro-mechanical model including the determination of coupling parameters for freezing rock[J]. International Journal of Rock Mechanics and Mining Sciences,2018,103:205-214.
|
[90] |
JIAO K,HAN D,WANG D,et al. Investigation of thermal-hydro-mechanical coupled fracture propagation considering rock damage[J]. Computational Geosciences,2022,26(5):1 167-1 187.
|
[91] |
LIU N,LI N,WANG S,et al. A fully coupled thermo-hydro-mechanical model for fractured rock masses in cold regions[J]. Cold Regions Science and Technology,2023,205:103707.
|
[92] |
柳程希. 液氮作用下页岩冻融应力损伤分析[硕士学位论文][D]. 青岛:中国石油大学(华东),2018.(LIU Chengxi. Damage analysis on freeze-thaw stress of shale underliquid nitrogen condition[M. S. Thesis][D]. Qingdao:China University of Petroleum(East China),2018.(in Chinese))
|
[93] |
林海飞,李博涛,李树刚,等. 液氮致裂层理煤体热-流-固-损伤耦合模型及数值模拟研究[J]. 岩石力学与工程学报,2024,43(5):1 110-1 123.(LIN Haifei,LI Botao,LI Shugang,et al. Study on thermal-fluid-solid-damage coupling model and numerical simulation of liquid nitrogen fracturing bedding coal[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(5):1 110-1 123.(in Chinese))
|
[94] |
HAN S,CHENG Y,GAO Q,et al. A fully coupled thermo-hydro-mechanical model with ice-water phase change for liquid nitrogen injection simulation[J]. Journal of Petroleum Science and Engineering,2021,203:108676.
|
[95] |
REN K,CAI C. Numerical investigation into the distributions of temperature and stress around wellbore during the injection of cryogenic liquid nitrogen into hot dry rock reservoir[J]. Mathematical Problems in Engineering,2021,2021(1):9913321.
|
[96] |
SHI Y,SONG X,SHEN Z,et al. Numerical investigation on heat extraction performance of a CO2 enhanced geothermal system with multilateral wells[J]. Energy,2018,163:38-51.
|
[97] |
黄 鑫,唐世斌,包春燕,等. 热应力与膨胀力耦合作用下岩石破裂机制的数值模拟研究[J]. 防灾减灾工程学报,2017,37(4):611-620.(HUANG Xin,TANG Shibin,BAO Chunyan,et al. Numerical simulation of rock failure process under coupling effect of thermal stress and inner pressure[J]. Journal of Disaster Prevention and Mitigation Engineering,2017,37(4):611-620.(in Chinese))
|
[98] |
CAI C,HUANG Z,LI G,et al. Feasibility of reservoir fracturing stimulation with liquid nitrogen jet[J]. Journal of Petroleum Science and Engineering,2016,144:59-65.
|
[99] |
LIN H,LI B,LI S,et al. Enhancing coalbed methane recovery using liquid nitrogen as a fracturing fluid:A coupled thermal-hydro-mechanical modeling and evaluation in water-bearing coal seam[J]. Energy,2024,291:130445.
|
[100] |
LIU S,LI X,WANG D. Numerical simulation of the coal temperature field evolution under the liquid nitrogen cold soaking[J]. Arabian Journal of Geosciences,2020,13:1-10.
|
[101] |
MONSEN K,BARTON N. A numerical study of cryogenic storage in underground excavations with emphasis on the rock joint response[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(7):1 035-1 045.
|
[102] |
KIM H,AMANTINI E,CHANFREAU E. Pilot project:lined cavern LNG storage[J]. The Korean Society for Geosystem Enginering,2003,40(2):140-145.
|
[103] |
ZHOU C,GAO F,CAI C,et al. Mechanical properties and damage evolution of heated granite subjected to liquid nitrogen cooling[J]. Applied Sciences,2022,20(12):10615.
|
[104] |
SHAO Z,SUN L,ABOAYANAH K R,et al. Investigate the mode I fracture characteristics of granite after heating-LN2 cooling treatments[J]. Rock Mechanics and Rock Engineering,2022,55(7):4 477-4 496.
|
[105] |
ZHANG C,WANG L,DU J,et al. Numerical modelling rock deformation subject to nitrogen cooling to study permeability evolution[J]. International Journal of Coal Science and Technology,2015,2(4):293-298.
|
[106] |
YAN M,FAN Y,YUE M,et al. Heat-mass transfer coupling effects in water-ice phase transformation of water-bearing coal frozen with liquid nitrogen[J]. Applied Thermal Engineering,2022,215:118902.
|
[107] |
NEAUPANE K M,YAMABE T. A fully coupled thermo-hydro-mechanical nonlinear model for a frozen medium[J]. Computers and Geotechnics,2001,28(8):613-637.
|
[108] |
李和万,刘 戬,高熹才,等. 液氮冷加载对不同含水饱和度节理煤样损伤的影响[J]. 采矿与安全工程学报,2022,39(2):413-420.(LI Hewan,LIU Jian,GAO Xicai,et al. Effect of liquid nitrogen cold loading on damage of jointed coal samples with different water saturation[J]. Journal of Mining and Safety Engineering,2022,39(2):413-420.(in Chinese))
|
[109] |
TAO J,WU Y,LI S,et al. Coupled simulations on fracture network evolution during nitrogen fracturing after liquid nitrogen pre-conditioning in shale[J]. Bulletin of Engineering Geology and the Environment,2023,82(12):468.
|
[110] |
WU Y,TAO J,WANG J,et al. Experimental investigation of shale breakdown pressure under liquid nitrogen pre-conditioning before nitrogen fracturing[J]. International Journal of Mining Science and Technology,2021,31(4):611-620.
|
[111] |
WASILEWSKI T G,BARCI?SKI T,MARCHEWKA M. Experimental investigations of thermal properties of icy lunar regolith and their influence on phase change interface movement[J]. Planetary and Space Science,2021,200:105197.
|
[112] |
郑 琼,江丽霞,徐玉杰,等. 碳达峰、碳中和背景下储能技术研究进展与发展建议[J]. 中国科学院院刊,2022,37(4):529-540.(ZHENG Qiong,JIANG Lixia,XU Yujie,et al. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality[J]. Bulletin of the Chinese Academy of Sciences,2022,37(4):529-540.(in Chinese))
|
[113] |
黄 宽,张万益,王丰翔,等. 地下空间储能国内外发展现状及调查建议[J]. 中国地质,2024,51(1):105-117.(HUANG Kuan,ZHANG Wanyi,WANG Fengxiang,et al. Development status of underground space energy storage at home and abroad and geological survey suggestions[J]. Geological Journal of China,2024,51(1):105-117.(in Chinese))
|
[114] |
PARK E S,JUNG Y B,SONG W K,et al. Pilot study on the underground lined rock cavern for LNG storage[J]. Engineering Geology,2010,116(1/2):44-52.
|
[115] |
Park E,Chung S,Lee H,et al. Design and operation of a pilot plant for underground LNG storage[C]//ARMA Canada-US Rock Mechanics Symposium. Alexandria:ARMA,2007:ARMA-07-150.
|
[116] |
YI M J,KIM J H,PARK S G,et al. Investigation of ground condition changes due to cryogenic conditions in an underground LNG storage plant[J]. Exploration Geophysics,2005,36(1):67-72.
|
[117] |
CHA S S,LEE J Y,LEE D H,et al. Engineering characterization of hydraulic properties in a pilot rock cavern for underground LNG storage[J]. Engineering geology,2006,84(3/4):229-243.
|
[118] |
徐 彬,李 宁,李仲奎,等. 低温液化石油气和液化天然气储库及相关岩石力学研究进展[J]. 岩石力学与工程学报,2013,32(增2):2 977-2 993.(XU Bin,LI Ning,LI Zhongkui,et al. Low-temperature lpg and lng storage caverns and related research review of rock mechanics[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(Supp.2):2 977-2 993.(in Chinese))
|
[119] |
MIK A. Vest process propane cavern project,Norway[EB/OL]. http:// www.mika.no/upload/referanselister/westprosesspropanecavern,2002-07-01.
|
[120] |
GLAMHEDEN R,LINDBLOM U. Thermal and mechanical behaviour of refrigerated caverns in hard rock[J]. Tunnelling and Underground Space Technology,2002,17(4):341-353.
|
[121] |
PB-KBB INC. Advanced underground gas storage concepts:refrigerated- mined cavern storage[R]. Houston:PB-KBB Inc.,1998.
|
[122] |
丁国生,丁一宸,李 洋,等. 碳中和行动下的中国地下储气库发展前景[J]. 油气储运,2022,41(1):1-9.(DING Guosheng,DING Yichen,LI Yang,et al. Prospects of underground gas storage in China under the strategy of carbon neutrality[J]. Oil and Gas Storage and Transportation,2022,41(1):1-9.(in Chinese))
|
[123] |
CROTOGINO F,DONADEI S,BÜNGER U,et al. Large-scale hydrogen underground storage for securing future energy supplies[C]// The 18th World Hydrogen Energy Conference. Forschungszentrum:Zentralbibliothek,2010:37-45.
|
[124] |
FORSBERG C W. Future hydrogen markets for large-scale hydrogen production systems[J]. International Journal of Hydrogen Energy,2007,32(4):431-439.
|
[125] |
LI Z,XU H,ZHANG C. Liquid nitrogen gasification fracturing technology for shale gas development[J]. Journal of Petroleum Science and Engineering,2016,138:253-256.
|
[126] |
ALLEN J C,BAUER C L. Method of increasing the permeability ofa subterranean hydrocarbon bearing formation[P]. America:US3638727 A,1968-09-27.
|
[127] |
FINNIE I,COOPER G A,BERLIE J. Fracture propagation in rock by transient cooling[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1979,16(1):11-21.
|
[128] |
MCDANIEL B W,GRUNDMANN S R,KENDRICK W D,et al. Field applications of cryogenic nitrogen as a hydraulic fracturing fluid[C]// SPE Annual Technical Conference and Exhibition?. Richardson:SPE,1997:SPE-38623-MS.
|
[129] |
GRUNDMANN S R,RODVELT G D,DIALS G A,et al. Cryogenic nitrogen as a hydraulic fracturing fluid in the devonian shale[C]// SPE Eastern Regional Meeting. Richardson:SPE,1998:SPE-51067-MS.
|
[130] |
CHA M,ALQAHTANI N B,YIN X,et al. Laboratory system for studying cryogenic thermal rock fracturing for well stimulation[J]. Journal of Petroleum Science and Engineering,2017,156:780-789.
|
[131] |
ALQATAHNI N B,CHA M,YAO B,et al. Experimental investigation of cryogenic fracturing of rock specimens under true triaxial confining stresses[C]// SPE Europec featured at EAGE Conference and Exhibition?. Richardson:SPE,2016:SPE-180071-MS.
|
[132] |
YANG R,HUANG Z,SHI Y,et al. Laboratory investigation on cryogenic fracturing of hot dry rock under triaxial-confining stresses[J]. Geothermics,2019,79:46-60.
|
[133] |
HUANG P,HUANG Z,YANG Z,et al. An innovative experimental equipment for liquid nitrogen fracturing[J]. Review of Scientific Instruments,2019,90(3):036104.
|
[134] |
ZHANG S,HUANG Z,LI G,et al. Numerical analysis of transient conjugate heat transfer and thermal stress distribution in geothermal drilling with high-pressure liquid nitrogen jet[J]. Applied Thermal Engineering,2018,129:1 348-1 357.
|
[135] |
WEN H,YANG R,HUANG Z,et al. Numerical simulation of proppant transport in liquid nitrogen fracturing[J]. Journal of Natural Gas Science and Engineering,2020,84:103657.
|
[136] |
李子丰. 液化氮气在油气层内气化压裂方法[P]. 中国:CN201110361327.8,2024-06-10.(LI Zifeng. Nitrogen liquefaction gas fracturing method in oil and gas reservoirs[P]. China:CN201110361327.8,2024-06-10.(in Chinese))
|
[137] |
李 波,王泽祺,张路路,等. 可增压液氮与氮气耦合致裂增透装置及增透实验方法[P]. 中国:CN201910849842.7,2023-06-23.(LI Bo,WANG Zeqi,ZHANG Lulu,et al. Pressurized liquid nitrogen and nitrogen coupling fracturing antireflection device and antireflection experimental method[P]. China:CN201910849842.7,2023-06-23.(in Chinese))
|
[138] |
BIRD K J,CHARPENTIER R R,GAUTIER D L,et al. Circum-Arctic resource appraisal:Estimates of undiscovered oil and gas north of the Arctic Circle[R]. Virginia:US Geological Survey,2008.
|
[139] |
孙 迪,张厚和,郝 婧,等. 北极地区油气资源分布特征与开发利用分析[J]. 极地研究,2024,36(2):286-303.(SUN Di,ZHANG Houhe,HAO Jing,et al. Analysis of distribution and exploitation of oil and gas resources in the Arctic region[J]. Polar Research,2024,36(2):286-303.(in Chinese))
|
[140] |
DEPARTMENT OF ENERGY. US Department of energy announces establishment of office of Arctic energy[EB/OL]. https://www.energy. gov/articles/us-department-energy-announces-establishment-office-arctic- energy,2020-09-17.
|
[141] |
П Л А Н. Развития инфраструктуры cеверного морского пути на период до 2035года[EB/OL]. https://seanews. ru/wp-content/uploads/ 2019/12/plan-smp.pdf,2019-12-31.
|
[142] |
杨 成. 极地冰岩夹层钻进碎岩机制分析及试验研究[博士学位论文][D]. 长春:吉林大学,2016.(YANG Cheng. Theoretical and experimental study on fragmentation mechanism during polar debris-rich ice drilling[Ph. D.Thesis][D]. Changchun:Jilin University,2016.(in Chinese))
|
[143] |
谢 剑,刘 洋,严加宝,等. 极地低温环境下混凝土断裂性能试验研究[J]. 建筑结构学报,2021,42(增1):341-350.(XIE Jian,LIU Yang,YAN Jiabao,et al. Experimental study on fracture properties of concrete in polar low temperature environment[J]. Journal of Building Structures,2021,42(Supp.1):341-350.(in Chinese))
|
[144] |
LORIA A F R,FRIGO B,CHIAIA B. A non-linear constitutive model for describing the mechanical behaviour of frozen ground and permafrost[J]. Cold regions Science and Technology,2017,133:63-69.
|
[145] |
LI H,DANG X,ZHU K,et al. Review and outlook on arctic offshore facilities and technologies[C]// OTC Arctic Technology Conference 2015. Houston:Offshore Technology Conferenc,2015:777-800.
|
[146] |
FELDMAN W C,MAURICE S,BINDER A B,et al. Fluxes of fast and epithermal neutrons from Lunar Prospector:Evidence for water ice at the lunar poles[J]. Science,1998,281:1 496-1 500.
|
[147] |
SPUDIS P D,BUSSEY D B J,BALOGA S M,et al. Evidence for water ice on the Moon:Results for anomalous polar craters from the LRO Mini‐RF imaging radar[J]. Journal of Geophysical Research:Planets,2013,118(10):2 016-2 029.
|
[148] |
SELVANS M M,PLAUT J J,AHARONSON O,et al. Internal structure of Planum Boreum,from Mars advanced radar for subsurface and ionospheric sounding data[J]. Journal of Geophysical Research:Planets,2010,115(E9):E09003.
|
[149] |
NASA. Artemis accords[EB/OLl. https://www.nasa.govartemis-accords/,2020-10-13.
|
[150] |
ZHANG T,WANG B,WEI H,et al. Review on planetary regolith-sampling technology[J]. Progress in Aerospace Sciences,2021,127:100760.
|
[151] |
VILES H,MESSENZEHL K,MAYAUD J,et al. Stress histories control rock-breakdown trajectories in arid environments[J]. Geology,2018,46(5):419-422.
|
[152] |
VILES H,EHLMANN B,WILSON C F,et al. Simulating weathering of basalt on Mars and Earth by thermal cycling[J]. Geophysical Research Letters,2010,37(18):L18201
|
[153] |
DELBO M,LIBOUREL G,WILKERSON J,et al. Thermal fatigue as the origin of regolith on small asteroids[J]. Nature,2014,508:233-236.
|
[154] |
XIAO S,CHENG X,HOU M,et al. Analysis of experimental results on the bearing capacity of sand in low-gravity conditions[J]. Microgravity Science and Technology,2022,34(2):16.
|
[155] |
薛 龙,姚 猛,李立犇,等. 基于触月压痕的表层月壤力学状态试验分析[J]. 吉林大学学报:工学版,2022,52(3):497-503.(XUE Long,YAO Meng,LI Liben,et al. Experimental analysis of mechanical properties of surface lunar soil based on lunar indentation[J]. Journal of Jilin University:Engineering and Technology,2022,52(3):497-503.(in Chinese))
|
[156] |
王 康,姚 猛,李立犇,等. 基于月面表取采样触月压痕的月壤力学状态分析[J]. 吉林大学学报:工学版,2021,51(3):1 146-1 152. (WANG Kang,YAO Meng,LI Liben,et al. Mechanical performance identification for lunar soil in lunar surface sampling[J]. Journal of Jilin University:Engineering and Technology,2021,51(3):1 146-1 152. (in Chinese))
|
[157] |
ATKINSON J,PRASAD M,ABBUD-MADRID A,et al. Penetration and relaxation behavior of JSC-1A lunar regolith simulant under cryogenic conditions[J]. Icarus,2020,346:113812.
|
[158] |
丁烈云,周 诚,高玉月,等. 地外建造研究进展与科学技术挑战[J]. 土木工程学报,2024,57(6):26-42.(DING Lieyun,ZHOU Cheng,GAO Yuyue,et al. Research progress and scientific and technological challenges in extraterrestrial construction[J]. Journal of Civil Engineering,2024,57(6):26-42.(in Chinese))
|
[159] |
HAN W,DING L,CAI L,et al. Sintering of HUST-1lunar regolith simulant[J]. Construction and Building Materials,2022,324:126655.
|
[160] |
WANG R,QIAO G,SONG G. Additive manufacturing by laser powder bed fusion and thermal post-treatment of the lunar-regolith-based glass-ceramics for in-situ resource utilization[J]. Construction and Building Materials,2023,392:132051.
|