[1] |
LEE H,JEON S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression[J]. International Journal of Solids and Structures,2011,48(6):979-999.
|
[2] |
KURUPPU M D,OBARA Y,AYATOLLAHI M R,et al. ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen[J]. Rock Mechanics and Rock Engineering,2014,47(1):267-274.
|
[3] |
LI D,ZHU Q,ZHOU Z,et al. Fracture analysis of marble specimens with a hole under uniaxial compression by digital image correlation[J]. Engineering Fracture Mechanics,2017,183:109-124.
|
[4] |
BOBET A,EINSTEIN H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(7):863-888.
|
[5] |
FUJII Y,ISHIJIMA Y. Consideration of fracture growth from an inclined slit and inclined initial fracture at the surface of rock and mortar in compression[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(6):1 035-1 041.
|
[6] |
YANG S,JING H. Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression[J]. International Journal of Fracture,2011,168(2):227-250.
|
[7] |
LU Y,WANG L,ELSWORTH D. Uniaxial strength and failure in sandstone containing a pre-existing 3D surface flaw[J]. International Journal of Fracture,2015,194(1):59-79.
|
[8] |
YANG S,TIAN W,HUANG Y,et al. An experimental and numerical study on cracking behavior of brittle sandstone containing two non-coplanar fissures under uniaxial compression[J]. Rock Mechanics and Rock Engineering,2016,49(4):1 497-1 515.
|
[9] |
LIU T,LIN B,YANG W,et al. Cracking process and stress field evolution in specimen containing combined flaw under uniaxial compression[J]. Rock Mechanics and Rock Engineering,2016,49(8):3 095-3 113.
|
[10] |
LIU T,LIN B,YANG W. Mechanical behavior and failure mechanism of pre-cracked specimen under uniaxial compression[J]. Tectonophysics,2017,712/713:330-343.
|
[11] |
CHEN M,JING H,MA X,et al. Fracture evolution characteristics of sandstone containing double fissures and a single circular hole under uniaxial compression[J]. International Journal of Mining Science and Technology,2017,27(3):499-505.
|
[12] |
YANG S,TIAN W,HUANG Y,et al. Experimental and discrete element modeling on cracking behavior of sandstone containing a single oval flaw under uniaxial compression[J]. Engineering Fracture Mechanics,2018,194:154-174.
|
[13] |
YANG S,YANG Z,ZHANG P,et al. Experiment and peridynamic simulation on cracking behavior of red sandstone containing a single non-straight fissure under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics,2020,108:102637.
|
[14] |
杨圣奇,张鹏超,滕尚永,等. 含三裂隙巴西圆盘抗拉强度和裂纹特征试验研究[J]. 中国矿业大学学报,2021,50(1):90-98.(YANG Shengqi,ZHANG Pengchao,TENG Shangyong,et al. Experimental study of tensile strength and crack evolution characteristics of Brazilian discs containing three pre-existing fissures[J]. Journal of China University of Mining and Technology,2021,50(1):90-98.(in Chinese))
|
[15] |
ZHANG S,WANG L,GAO M. Experimental and numerical study of the influence of prefabricated crack width on the fracture toughness of NSCB specimens[J]. Rock Mechanics and Rock Engineering,2020,53(11):5 133-5 154.
|
[16] |
张旭龙,张 盛,安定超,等. 平行双裂缝圆盘试样裂纹扩展过程的尺寸效应试验研究[J]. 岩石力学与工程学报,2023,42(1):115-128.(ZHANG Xulong,ZHANG Sheng,AN Dingchao,et al. Experimental study on the size effect of crack propagation process of disk samples containing parallel double pre-existing flaws[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(1):115-128.(in Chinese))
|
[17] |
王 娟,王 星,袁 超,等. 不同裂隙数量砂岩体力学性状演变规律试验研究[J]. 河南科技大学学报:自然科学版,2023,44(5):56-64.(WANG Juan,WANG Xing,YUAN Chao,et al. Experimental study of evolution law of mechanical properties of sandstone with different fracture numbers[J]. Journal of Henan University of Science and Technology:Natural Science,2023,44(5):56-64.(in Chinese))
|
[18] |
王笑然,王恩元,刘晓斐,等. 裂隙砂岩裂纹扩展声发射响应及速率效应研究[J]. 岩石力学与工程学报,2018,37(6):1 446-1 458. (WANG Xiaoran,WANG Enyuan,LIU Xiaofei,et al. Macro-crack propagation process and corresponding AE behaviors of fractured sandstone under different loading rates[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(6):1 446-1 458.(in Chinese))
|
[19] |
张 科,蔡晨曦,张 凯,等. 饱水裂隙砂岩力学及前兆异常特征量化分析[J]. 煤炭学报,2021,46(增1):200-210.(ZHANG Ke,CAI Chengxi,ZHANG Kai,et al. Quantitative analysis on mechanical and precursory anomaly properties of water-saturated sandstone with a flaw[J]. Journal of China Coal Society,2021,46(Supp.1):200-210. (in Chinese))
|
[20] |
程虹铭,杨小彬,张 成,等. 裂隙砂岩非均匀变形特征及损伤不稳定发展状态判识模型[J]. 采矿与安全工程学报,2023,40(6):1 290-1 300.(CHENG Hongming,YANG Xiaobin,ZHANG Cheng,et al. Characteristics of heterogeneous deformation and identification model of unstable damage state in pre-existing crack sandstone[J]. Journal of Mining and Safety Engineering,2023,40(6):1 290-1 300. (in Chinese))
|
[21] |
CHEN L,GUO W,ZHANG D,et al. Experimental study on the influence of prefabricated fissure size on the directional propagation law of rock type-I crack[J]. International Journal of Rock Mechanics and Mining Sciences,2022,160:105274.
|
[22] |
WANG Y,PENG K,SHANG X,et al. Experimental and numerical simulation study of crack coalescence modes and microcrack propagation law of fissured sandstone under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics,2021,115:103060.
|
[23] |
YANG S,HUANG Y,JING H,et al. Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression[J]. Engineering Geology,2014,178:28-48.
|
[24] |
ZHANG X,WONG L N Y. Crack initiation,propagation and coalescence in rock-like material containing two flaws:a numerical study based on bonded-particle model approach[J]. Rock Mechanics and Rock Engineering,2013,46(5):1 001-1 021.
|
[25] |
王浩然,王志亮,王昊辰,等. 真三轴压缩下大理岩强度、变形与损伤特征数值[J]. 哈尔滨工业大学学报,2022,54(8):100-107. (WANG Haoran,WANG Zhiliang,WANG Haochen,et al. Numerical study of strength,deformation,and damage characteristics of marble under true triaxial compression[J]. Journal of Harbin Institute of Technology,2022,54(8):100-107.(in Chinese))
|
[26] |
吴顺川,孙 伟,刘 洋,等. Ⅰ型断裂韧度模拟方法及细观影响因素研究[J]. 岩土力学,2020,41(8):2 536-2 546.(WU Shunchuan,SUN Wei,LIU Yang,et al. Study on simulation method of mode Ⅰ fracture toughness and its meso-influencing factors[J]. Rock and Soil Mechanics,2020,41(8):2 536-2 546.(in Chinese))
|
[27] |
HUANG Y,YANG S,CHEN G,et al. Fracture behavior of cylindrical sandstone specimens with two pre-existing flaws:experimental investigation and PFC3D simulation[J]. Geosciences Journal,2022,26(1):151-165.
|
[28] |
张朝俊,吴顺川,储超群,等. 裂隙砂岩应变场演化与超声时移衰减特征研究[J]. 岩土力学,2024,45(5):1 284-1 296.(ZHANG Chaojun,WU Shunchuan,CHU Chaoqun,et al. Strain field evolution and ultrasonic time-lapse attenuation characteristics of fractured sandstone[J]. Rock and Soil Mechanics,2024,45(5):1 284-1 296.(in Chinese))
|
[29] |
田文岭,杨圣奇,黄彦华. 不同围压下共面双裂隙脆性砂岩裂纹演化特性颗粒流模拟研究[J]. 采矿与安全工程学报,2017,34(6):1 207-1 215.(TIAN Wenling,YANG Shengqi,HUANG Yanhua. PFC2D simulation on crack evolution behavior of brittle sandstone containing two coplanar fissures under different confining pressures[J]. Journal of Mining and Safety Engineering,2017,34(6):1 207-1 215. (in Chinese))
|
[30] |
陈鹏宇. PFC2D模拟裂隙岩石裂纹扩展特征的研究现状[J]. 工程地质学报,2018,26(2):528-539.(CHEN Pengyu. Research progress on PFC2D simulation of crack propagation characteristics of cracked rock[J]. Journal of Engineering Geology,2018,26(2):528-539.(in Chinese))
|
[31] |
邓树新,郑永来,冯利坡,等. 试验设计法在硬岩PFC3D模型细观参数标定中的应用[J]. 岩土工程学报,2019,41(4):655-664. (DENG Shuxin,ZHENG Yonglai,FENG Lipo,et al. Application of design of experiments in microscopic parameter calibration for hard rocks of PFC3D model[J]. Chinese Journal of Geotechnical Engineering,2019,41(4):655-664.(in Chinese))
|
[32] |
郝保钦,张昌锁,王晨龙,等. 岩石PFC2D模型细观参数确定方法研究[J]. 煤炭科学技术,2022,50(4):132-141.(HAO Baoqin,ZHANG Cangsuo,WANG Chenlong,et al. Study on determination micro-parameters of rock PFC2D model[J]. Coal Science and Technology,2022,50(4):132-141.(in Chinese))
|
[33] |
袁瑞甫,陈立峰,张志刚,等. 浆液磨料水射流切割能力试验及切割深度预测模型[J]. 河南理工大学学报:自然科学版,2023,42(6):11-18.(YUAN Ruifu,CHEN Lifeng,ZHANG Zhigang,et al. Experimental study and predictive model for the cutting capability and cutting depth of slurry abrasive water jet[J]. Journal of Henan Polytechnic University:Natural Science,2023,42(6):11-18.(in Chinese))
|
[34] |
袁瑞甫,秦 博,董 卓,等. 磨料水射流冲击角对砂岩切割性能影响的试验研究[J]. 煤炭学报,2024,49(增1):208-219.(YUAN Ruifu,QIN Bo,DONG Zhuo,et al. Experimental study on the effect of abrasive water jet impact angle on the cutting performance of sandstone[J]. Journal of China Coal Society,2024,49(Supp.1):208-219.(in Chinese))
|
[35] |
李英杰,倪 婷,左建平,等. 坚硬顶板定向水力压裂裂纹起裂机制及影响因素分析[J]. 岩石力学与工程学报,2022,41(10):2 015-2 029.(LI Yingjie,NI Ting,ZUO Jianping,et al. Analysis of crack initiation mechanism and influencing factors of hard roofs due to directional hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(10):2 015-2 029.(in Chinese))
|
[36] |
冯彦军,康红普. 水力压裂起裂与扩展分析[J]. 岩石力学与工程学报,2013,32(增2):3 169-3 179.(FENG Yanjun,KANG Hongpu. Hydraulic fracturing initiation and propagation[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(Supp.2):3 169-3 179.(in Chinese))
|
[37] |
中国航空研究院. 应力强度因子手册(增订版)[M]. 北京:科学出版社,1993:140-141.(China Aeronautical Research Institute. Handbook of stress intensity factors(Revised and Enlarged Edition)[M]. Beijing:Science Press,1993:140-141.(in Chinese))
|