[1] |
窦 杰,向子林,许 强,等. 机器学习在滑坡智能防灾减灾中的应用与发展趋势[J]. 地球科学,2023,48(5):1 657-1 674.(DOU Jie,XIANG Zilin,XU Qiang,et al. Application and development trend of machine learning in landslide intelligent disaster prevention and mitigation[J]. Earth Science,2023,48(5):1 657-1 674.(in Chinese))
|
[2] |
罗路广,裴向军,崔圣华,等. 九寨沟地震滑坡易发性评价因子组合选取研究[J]. 岩石力学与工程学报,2021,40(11):2 306-2 319. (LUO Luguang,PEI Xiangjun,CUI Shenghua,et al. Combined selection of susceptibility assessment factors for Jiuzhaigou earthquake-induced landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2 306-2 319.(in Chinese))
|
[3] |
高秉海,何 毅,张立峰,等. 顾及InSAR形变的CNN滑坡易发性动态评估——以刘家峡水库区域为例[J]. 岩石力学与工程学报,2023,42(2):450-465.(GAO Binghai,HE Yi,ZHANG Lifeng,et al. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation:A case study of Liujiaxia reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(2):450-465. (in Chinese))
|
[4] |
LIN Q,LIMA P,STEGER S,et al. National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data[J]. Geoscience Frontiers,2021,12(6):101248.
|
[5] |
NEFESLIOGLU H A,SEZER E A,GOKCEOGLU C,et al. A modified analytical hierarchy process(M-AHP) approach for decision support systems in natural hazard assessments[J]. Computers and Geosciences,2013,59:1-8.
|
[6] |
VAN DEN E M,HERVÁS J,JAEDICKE C,et al. Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data[J]. Landslides,2012,9:357-369.
|
[7] |
DU J,GLADE T,WOLDAI T,et al. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley,Tibet,Chinese Himalayas[J]. Engineering Geology,2020,270:105572.
|
[8] |
付智勇,李典庆,王 顺,等. 基于多时空滑坡编录和TrAdaBoost迁移学习的滑坡易发性评价[J]. 地球科学,2023,48(5):1 935-1 947. (FU Zhiyong,LI Dianqing,WANG Shun,et al. Landslide susceptibility assessment based on multitemporal landslide inventories and TrAdaBoost transfer learning[J]. Earth Science,2023,48(5):1 935-1 947.(in Chinese))
|
[9] |
艾 骁. 基于机器学习的地震滑坡易发性评估模型构建——以北京市山区为例[博士学位论文][D]. 哈尔滨:中国地震局工程力学研究所,2021.(AI Xiao. construction of earthquake landslide susceptibility assessment model based on machine learning:a case study of Beijing mountainous area[Ph. D. Thesis][D]. Harbin:Institute of Engineering Mechanics,China Earthquake Administration,2021.(in Chinese))
|
[10] |
曾浩炜. 环境相似性约束的滑坡易发性图神经网络可靠评估方法[博士学位论文][D]. 成都:西南交通大学,2022.(ZENG Haowei. Reliable landslide susceptibility evaluation method based on the graph neural network with constraints of environmental similarity[Ph. D. Thesis][D]. Chengdu:Southwest Jiaotong University,2022.(in Chinese))
|
[11] |
MAKABAYI B,MUSINGUZI M,OTUKEI J R. Estimation of ground vertical displacement in landslide prone areas using PS-InSAR—A case study of bududa,Uganda[J]. International Journal of Geosciences,2021,12(4):347.
|
[12] |
SU X,ZHANG Y,MENG X,et al. Updating inventory,deformation,and development characteristics of landslides in Hunza Valley,NW Karakoram,Pakistan by SBAS-InSAR[J]. Remote Sensing,2022,14(19):4 907.
|
[13] |
赵超英,刘晓杰,张 勤,等. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报:信息科学版,2019,44(7):996-1 007.(ZHAO Chaoying,LIU Xiaojie,ZHANG Qin,et al. Research on loess landslide identification,monitoring and failure mode with InSAR technique in Heifangtai,Gansu[J]. Geomatics and Information Science of Wuhan University,2019,44(7):996-1 007.(in Chinese))
|
[14] |
张 勤,赵超英,陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报,2022,51(6):885-896.(ZHANG Qin,ZHAO Chaoying,CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multisource remote sensing[J]. Acta Geodaetica et Cartographica Sinica,2022,51(6):885-896.(in Chinese))
|
[15] |
BERARDINO P,FORNARO G,LANARI R,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2 375-2 383.
|
[16] |
冯文凯,顿佳伟,易小宇,等. 基于SBAS-InSAR技术的金沙江流域沃达村巨型老滑坡形变分析[J]. 工程地质学报,2020,28(2):384-393.(FENG Wenkai,DUN Jiawei,YI Xiaoyu,et al. Deformation analysis of Woda village old landslide in Jinsha river basin using SBAS-InSAR technology[J]. Journal of Engineering Geology,2020,28(2):384-393.(in Chinese))
|
[17] |
花卫华,宿紫莹,朱玉华,等. 大范围地质体分块建模方法[J]. 地质科技通报,2023,42(6):257-265.(HUA Weihua,SU Ziying,ZHU Yuhua,et al. Large-range geological block modeling method[J]. Bulletin of Geological Science and Technology,2023,42(6):257-265.(in Chinese))
|
[18] |
郭衍昊,窦 杰,向子林,等. 基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价[J]. 地质科技通报,2024,43(3):251-265.(GUO Yanhao,DOU Jie,XIANG Zilin,et al. Optimized negative sampling strategy of gradient boosting decision tree and random forest for evaluating Wenchuan Coseismic landslides susceptibility mapping[JL]. Bulletin of Geological Science and Technology,2024,43(3):251-265.(in Chinese))
|
[19] |
杨 灿,刘磊磊,张遗立,等. 基于贝叶斯优化机器学习超参数的滑坡易发性评价[J]. 地质科技通报,2022,41(2):228-238.(YANG Chan,LIU Leilei,ZHANG Yili,et al. Machine learning based on landslide susceptibility assessment with Bayesian optimized the hyperparameters[J]. Bulletin of Geological Science and Technology,2022,41(2):228-238.(in Chinese))
|
[20] |
黄发明,曾诗怡,姚 池,等. 滑坡易发性预测建模的不确定性:不同“非滑坡样本”选择方式的影响[J]. 工程科学与技术,2024,56(1):169-182. (HUANG Faming,ZENG Shiyi,YAO Chi,et al. Uncertainties of landslide susceptibility prediction modeling:Influence of different selection methods of“non-landslide samples”[J]. Advanced Engineering Sciences,2024,56(1):169-182.(in Chinese))
|
[21] |
孙永彬,张 恩,李启亮,等. 金沙江下游永善段隐蔽性滑坡隐患综合遥感识别[J]. 工程科学与技术,2022,54(1):171-183.(SUN Yongbin,ZHANG En,LI Qiliang,et al. Comprehensive remote sensing identification of hidden landslides in Yongshan Section of Lower Jinsha River[J]. Advanced Engineering Sciences,2022,54(1):171-183.(in Chinese))
|
[22] |
吴 柯,杨 帆,徐 莹. 基于多时间序列Landsat-8遥感影像的珊瑚礁白化监测[J]. 地质科技通报,2022,41(5):181-189.(WU Ke,YANG Fan,XU Ying. Coral reef bleaching monitoring based on multitime Landsat-8 remote sensing image series[J]. Bulletin of Geological Science and Technology,2022,41(5):181-189.(in Chinese))
|
[23] |
刘 贺,罗 勇,雷坤超,等. 北京新航城地区地面沉降演化规律及多源监测方法对比研究[J]. 地质科技通报,2023,42(1):398-406.(LIU He,LUO Yong,LEI Kunchao,et al. Evolution of land subsidence and comparative study on multi-source monitoring methods in New Airlines City of Beijing[J]. Bulletin of Geological Science and Technology,2023,42(1):398-406.(in Chinese))
|
[24] |
周晓亭,黄发明,吴伟成,等. 基于耦合信息量法选择负样本的区域滑坡易发性预测[J]. 工程科学与技术,2022,54(3):25-35. (ZHOU Xiaoting,HUANG Faming,WU Weicheng,et al. Regional landslide susceptibility prediction based on negative sample selected by coupling information value method[J]. Advanced Engineering Sciences,2022,54(3):25-35.(in Chinese))
|
[25] |
王成楠,吴琳伟,宋 勇,等. 江西省寻乌县滑坡易发性评价模型及精度对比研究[J]. 资源环境与工程,2023,37(2):171-182. (WANG Chengnan,WU Linwei,SONG Yong,et al. Comparative study on landslide susceptibility evaluation model and accuracy in Xunwu County,Jiangxi Province[J]. Resources Environment and Engineering,2023,37(2):171-182.(in Chinese))
|
[26] |
黄发明,陈佳武,唐志鹏,等. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性[J]. 岩石力学与工程学报,2021,40(6):1 155-1 169.(HUANG Faming,CHEN Jiawu,TANG Zhipeng,et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1 155-1 169.(in Chinese))
|
[27] |
HUSSIN H Y,ZUMPANO V,REICHENBACH P,et al. Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model[J]. Geomorphology,2016,253:508-523.
|
[28] |
WANG S,WANG J,LUO Y,et al. Evaluation of heavy metal pollution with uneven spatial sampling distribution based on Voronoi area density[J]. Environmental Science and Pollution Research,2023,30(17):50 431-50 443.
|
[29] |
CHEN L,MA P,YU C,et al. Landslide susceptibility assessment in multiple urban slope settings with a landslide inventory augmented by InSAR techniques[J]. Engineering Geology,2023,327:107342.
|
[30] |
董继红,马志刚,梁京涛,等. 基于时序InSAR技术的滑坡隐患识别对比研究[J]. 自然资源遥感,2022,34(3):73-81.(DONG Jihong,MA Zhigang,LIANG Jingtao,et al. A comparative study of the identification of hidden landslide hazards based on time series InSAR techniques[J]. Remote Sensing for Natural Resources,2022,34(3):73-81.(in Chinese))
|
[31] |
STEGER S,BRENNING A,BELL R,et al. The influence of systematically incomplete shallow landslide inventories on statistical susceptibility models and suggestions for improvements[J]. Landslides,2017,14(5):1 767.
|
[32] |
SCHICKER R,MOON V. Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale[J]. Geomorphology,2012,161:40-57.
|
[33] |
LEE J H,SAMEEN M I,PRADHAN B,et al. Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods[J]. Geomorphology,2018,303:284-298.
|
[34] |
BHUYAN K,MEENA S R,NAVA L,et al. Mapping landslides through a temporal lens:an insight toward multi-temporal landslide mapping using the u-net deep learning model[J]. GIScience and Remote Sensing,2023,60(1):2182057.
|
[35] |
FU Z,LI C,YAO W. Landslide susceptibility assessment through TrAdaBoost transfer learning models using two landslide inventories[J]. Catena,2023,222:106799.
|
[36] |
林 珲,马培峰,王伟玺. 监测城市基础设施健康的星载MT-InSAR方法介绍[J]. 测绘学报,2017,46(10):1 421-1 433.(LIN Hui,MA Peifeng,WANG Weixi. Urban infrastructure health monitoring with spaceborne Multi-Temporal Synthetic Aperture Radar interferometry[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1 421-1 433. (in Chinese))
|
[37] |
DONG J,NIU R,LI B,et al. Potential landslides identification based on temporal and spatial filtering of SBAS-InSAR results[J]. Geomatics,Natural Hazards and Risk,2023,14(1):52-75.
|
[38] |
HE Y,ZHAO Z,ZHU Q,et al. An integrated neural network method for landslide susceptibility assessment based on time-series InSAR deformation dynamic features[J]. International Journal of Digital Earth,2024,17(1):2295408.
|